@article{TMF_2020_202_1_a1,
author = {A. Mirza and M.ul Hassan},
title = {Bilinearization and soliton solutions of the~supersymmetric coupled {KdV} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {14--19},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/}
}
TY - JOUR AU - A. Mirza AU - M.ul Hassan TI - Bilinearization and soliton solutions of the supersymmetric coupled KdV equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2020 SP - 14 EP - 19 VL - 202 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/ LA - ru ID - TMF_2020_202_1_a1 ER -
A. Mirza; M.ul Hassan. Bilinearization and soliton solutions of the supersymmetric coupled KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/
[1] Yu. Vess, Dzh. Begger, Supersimmetriya i supergravitatsiya, Mir, M., 1986 | MR | MR | Zbl
[2] J. Wess, B. Zumino, “Supergauge transformations in four dimensions”, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR
[3] A. Salam, J. Strathdee, “Super-gauge transformations”, Nucl. Phys. B, 76:3 (1974), 477–482 | DOI | MR
[4] P. Di Vecchia, S. Ferrara, “Classical solutions in two-dimensional supersymmetric field theories”, Nucl. Phys. B, 130:1 (1977), 93–104 | DOI | MR
[5] M. Chaichain, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI
[6] A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of the $N=1$ supersymmetric coupled dispersionless integrable system”, J. Nonlinear Math. Phys., 24:1 (2017), 107–115 | DOI | MR
[7] A. Mirza, M. Khassan, “O svoistvakh integriruemosti supersimmetrichnoi bezdispersionnoi integriruemoi sistemy so vzaimodeistviem”, TMF, 195:3 (2018), 381–390 | DOI | DOI
[8] B. A. Kupershmidt, “A super Korteweg–de Vries equation: an integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR
[9] T. G. Khovanova, “Superuravnenie Kortevega–de Friza, svyazannoe s superalgebroi Li strunnoi teorii Nevë–Shvartsa-2”, TMF, 72:2 (1987), 306–312 | MR | Zbl
[10] P. P. Kulish, “Analog uravneniya Kortevega–de Friza dlya superkonformnoi algebry”, Zap. nauchn. sem. LOMI, 155, 142–149 | DOI
[11] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl
[12] Yu. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl
[13] G. H. M. Roelofs, P. H. M. Kersten, “Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings”, J. Math. Phys., 33:6 (1992), 2185–2206 | DOI | MR | Zbl
[14] C. M. Yung, “The $N=2$ supersymmetric Boussinesq hierarchies”, Phys. Lett. B, 309:1–2 (1993), 75–84 | DOI | MR
[15] R. Hirota, J. Satsuma, “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85:8–9 (1981), 407–408 | DOI | MR
[16] P. Kersten, J. Krasil'shchik, “Complete integrability of the coupled KdV-mKdV system”, Lie Groups, Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie, Advanced Studies in Pure Mathematics, 37, eds. T. Morimoto, H. Sato, K. Yamaguchi, Math. Soc. Japan, Tokyo, 2002, 151–171 | DOI | MR
[17] J.-R. Yang, J.-J. Mao, “Soliton solutions of coupled KdV system from Hirota's bilinear direct method”, Commun. Theor. Phys., 49:1 (2008), 22–26 | DOI | MR
[18] S. Y. Lou, B. Tong, H.-C. Hu, X.-Y. Tang, “Coupled KdV equations derived from two-layer fluids”, J. Phys. A: Math. Gen., 39:3 (2005), 513–527, arXiv: nlin/0508029 | DOI | MR
[19] A. Sotomayor, A. Restuccia, “Integrability properties of a coupled KdV system and its supersymmetric extension”, J. Phys.: Conf. Ser., 720:1 (2016), 012017, 8 pp. | DOI
[20] A. S. Carstea, “Extension of the bilinear formalism to supersymmetric KdV-type equations”, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR
[21] A. S. Carstea, A. Ramani, B. Grammaticos, “Constructing the soliton solutions for the $N=1$ supersymmetric KdV hierarchy”, Nonlinearity, 14:5 (2001), 1419–1424 | DOI | MR
[22] B. Grammaticos, A. Ramani, A. S. Carstea, “Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation”, J. Physics A: Math. Gen., 34:23 (2001), 4881–4886 | DOI | MR
[23] Q. P. Liu, X.-B. Hu, M.-X. Zhang, “Supersymmetric modified Korteweg–de Vries equation: bilinear approach”, Nonlinearity, 18:4 (2005), 1597–1604 | DOI | MR
[24] Q. P. Liu, X.-X. Yang, “Supersymmetric two-boson equation: bilinearization and solutions”, Phys. Lett. A, 351:3 (2006), 131–135 | DOI | MR
[25] S. Ghosh, D. Sarma, Bilinearization of supersymmetric KP hierarchies associated with non-trivial flows, arXiv: nlin/0107019
[26] S. Ghosh, D. Sarma, “Bilinearization of $N=1$ supersymmetric modified KdV equations”, Nonlinearity, 16:2 (2002), 411–418, arXiv: nlin/0202031 | DOI | MR