Bilinearization and soliton solutions of the supersymmetric coupled KdV equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 14-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose an $N=1$ supersymmetric generalization of the coupled Korteweg–de Vries (KdV) equation and use the Hirota superoperator to obtain a superfield bilinear form of the supersymmetric coupled KdV equation. Using the Hirota method, we obtain explicit expressions for superfield soliton solutions of the supersymmetric coupled KdV equation. We also find superfield one- and two-soliton solutions.
Keywords: integrable system, supersymmetry, bilinearization, supersymmetric coupled Korteweg–de Vries equation.
@article{TMF_2020_202_1_a1,
     author = {A. Mirza and M.ul Hassan},
     title = {Bilinearization and soliton solutions of the~supersymmetric coupled {KdV} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {14--19},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/}
}
TY  - JOUR
AU  - A. Mirza
AU  - M.ul Hassan
TI  - Bilinearization and soliton solutions of the supersymmetric coupled KdV equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 14
EP  - 19
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/
LA  - ru
ID  - TMF_2020_202_1_a1
ER  - 
%0 Journal Article
%A A. Mirza
%A M.ul Hassan
%T Bilinearization and soliton solutions of the supersymmetric coupled KdV equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 14-19
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/
%G ru
%F TMF_2020_202_1_a1
A. Mirza; M.ul Hassan. Bilinearization and soliton solutions of the supersymmetric coupled KdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 14-19. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a1/

[1] Yu. Vess, Dzh. Begger, Supersimmetriya i supergravitatsiya, Mir, M., 1986 | MR | MR | Zbl

[2] J. Wess, B. Zumino, “Supergauge transformations in four dimensions”, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR

[3] A. Salam, J. Strathdee, “Super-gauge transformations”, Nucl. Phys. B, 76:3 (1974), 477–482 | DOI | MR

[4] P. Di Vecchia, S. Ferrara, “Classical solutions in two-dimensional supersymmetric field theories”, Nucl. Phys. B, 130:1 (1977), 93–104 | DOI | MR

[5] M. Chaichain, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI

[6] A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of the $N=1$ supersymmetric coupled dispersionless integrable system”, J. Nonlinear Math. Phys., 24:1 (2017), 107–115 | DOI | MR

[7] A. Mirza, M. Khassan, “O svoistvakh integriruemosti supersimmetrichnoi bezdispersionnoi integriruemoi sistemy so vzaimodeistviem”, TMF, 195:3 (2018), 381–390 | DOI | DOI

[8] B. A. Kupershmidt, “A super Korteweg–de Vries equation: an integrable system”, Phys. Lett. A, 102:5–6 (1984), 213–215 | DOI | MR

[9] T. G. Khovanova, “Superuravnenie Kortevega–de Friza, svyazannoe s superalgebroi Li strunnoi teorii Nevë–Shvartsa-2”, TMF, 72:2 (1987), 306–312 | MR | Zbl

[10] P. P. Kulish, “Analog uravneniya Kortevega–de Friza dlya superkonformnoi algebry”, Zap. nauchn. sem. LOMI, 155, 142–149 | DOI

[11] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl

[12] Yu. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl

[13] G. H. M. Roelofs, P. H. M. Kersten, “Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings”, J. Math. Phys., 33:6 (1992), 2185–2206 | DOI | MR | Zbl

[14] C. M. Yung, “The $N=2$ supersymmetric Boussinesq hierarchies”, Phys. Lett. B, 309:1–2 (1993), 75–84 | DOI | MR

[15] R. Hirota, J. Satsuma, “Soliton solutions of a coupled Korteweg–de Vries equation”, Phys. Lett. A, 85:8–9 (1981), 407–408 | DOI | MR

[16] P. Kersten, J. Krasil'shchik, “Complete integrability of the coupled KdV-mKdV system”, Lie Groups, Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie, Advanced Studies in Pure Mathematics, 37, eds. T. Morimoto, H. Sato, K. Yamaguchi, Math. Soc. Japan, Tokyo, 2002, 151–171 | DOI | MR

[17] J.-R. Yang, J.-J. Mao, “Soliton solutions of coupled KdV system from Hirota's bilinear direct method”, Commun. Theor. Phys., 49:1 (2008), 22–26 | DOI | MR

[18] S. Y. Lou, B. Tong, H.-C. Hu, X.-Y. Tang, “Coupled KdV equations derived from two-layer fluids”, J. Phys. A: Math. Gen., 39:3 (2005), 513–527, arXiv: nlin/0508029 | DOI | MR

[19] A. Sotomayor, A. Restuccia, “Integrability properties of a coupled KdV system and its supersymmetric extension”, J. Phys.: Conf. Ser., 720:1 (2016), 012017, 8 pp. | DOI

[20] A. S. Carstea, “Extension of the bilinear formalism to supersymmetric KdV-type equations”, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR

[21] A. S. Carstea, A. Ramani, B. Grammaticos, “Constructing the soliton solutions for the $N=1$ supersymmetric KdV hierarchy”, Nonlinearity, 14:5 (2001), 1419–1424 | DOI | MR

[22] B. Grammaticos, A. Ramani, A. S. Carstea, “Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation”, J. Physics A: Math. Gen., 34:23 (2001), 4881–4886 | DOI | MR

[23] Q. P. Liu, X.-B. Hu, M.-X. Zhang, “Supersymmetric modified Korteweg–de Vries equation: bilinear approach”, Nonlinearity, 18:4 (2005), 1597–1604 | DOI | MR

[24] Q. P. Liu, X.-X. Yang, “Supersymmetric two-boson equation: bilinearization and solutions”, Phys. Lett. A, 351:3 (2006), 131–135 | DOI | MR

[25] S. Ghosh, D. Sarma, Bilinearization of supersymmetric KP hierarchies associated with non-trivial flows, arXiv: nlin/0107019

[26] S. Ghosh, D. Sarma, “Bilinearization of $N=1$ supersymmetric modified KdV equations”, Nonlinearity, 16:2 (2002), 411–418, arXiv: nlin/0202031 | DOI | MR