Generalized hypergeometric solutions of the Heun equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present infinitely many solutions of the general Heun equation in terms of generalized hypergeometric functions. Each solution assumes that two restrictions are imposed on the involved parameters: a characteristic exponent of one of the singularities must be a nonzero integer, and the accessory parameter must satisfy a polynomial equation.
Keywords: general Heun equation, generalized hypergeometric function, recurrence relation.
@article{TMF_2020_202_1_a0,
     author = {A. M. Ishkhanyan},
     title = {Generalized hypergeometric solutions of {the~Heun} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--13},
     year = {2020},
     volume = {202},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/}
}
TY  - JOUR
AU  - A. M. Ishkhanyan
TI  - Generalized hypergeometric solutions of the Heun equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2020
SP  - 3
EP  - 13
VL  - 202
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/
LA  - ru
ID  - TMF_2020_202_1_a0
ER  - 
%0 Journal Article
%A A. M. Ishkhanyan
%T Generalized hypergeometric solutions of the Heun equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2020
%P 3-13
%V 202
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/
%G ru
%F TMF_2020_202_1_a0
A. M. Ishkhanyan. Generalized hypergeometric solutions of the Heun equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/

[1] K. Heun, “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten”, Math. Ann., 33:2 (1889), 161–179 | DOI | MR

[2] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995 | MR | Zbl

[3] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[4] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010 | MR

[5] M. Hortaçsu, “Heun functions and some of their applications in physics”, Adv. High Energy Phys., 2018 (2018), 8621573, 14 pp. | DOI

[6] The Heun Project. Heun functions, their generalizations and applications,\par, http://theheunproject.org/bibliography.html

[7] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966 | MR

[8] J. Letessier, “Co-recursive associated Jacobi polynomials”, J. Comput. Appl. Math., 57:1–2 (1995), 203–213 | DOI | MR

[9] J. Letessier, G. Valent, J. Wimp, “Some differential equations satisfied by hypergeometric functions”, Approximation and Computation: A Festschrift in Honor of Walter Gautschi, International Series of Numerical Mathematics, 119, ed. R. V. M. Zahar, Birkhäuser, Boston, MA, 1994, 371–381 | DOI | MR

[10] R. S. Maier, “$P$-symbols, Heun identities, and ${}_3F_2$ identities”, Special Functions and Orthogonal Polynomials, Contemporary Mathematics, 471, eds. D. Dominici, R. S. Maier, AMS, Providence, RI, 2008, 139–159 | DOI | MR

[11] K. Takemura, “Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial”, J. Phys. A: Math. Theor., 45:8 (2012), 085211, 14 pp., arXiv: 1106.1543 | DOI | MR

[12] T. A. Ishkhanyan, T. A. Shahverdyan, A. M. Ishkhanyan, “Expansions of the solutions of the general Heun equation governed by two-term recurrence relations for coefficients”, Adv. High Energy Phys., 2018 (2018), 4263678, 9 pp. | DOI

[13] N. Svartholm, “Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnung durch hypergeometrische Polynome”, Math. Ann., 116:1 (1939), 413–421 | DOI | MR

[14] A. Erdélyi, “Certain expansions of solutions of the Heun equation”, Quart. J. Math., Oxford Ser., os-15:1 (1944), 62–69 | DOI

[15] D. Schmidt, “Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen”, J. Reine Angew. Math., 309 (1979), 127–148 | DOI | MR

[16] A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity”, Eur. Phys. J. Plus, 133:3 (2018), 83, 12 pp., arXiv: 1803.00565 | DOI

[17] A. M. Ishkhanyan, “The third exactly solvable hypergeometric quantum-mechanical potential”, Europhys. Lett., 115:2 (2016), 20002, 9 pp., arXiv: 1602.07685 | DOI

[18] A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the general Heun functions”, Ann. Phys., 388 (2018), 456–471 | DOI | MR

[19] V. Bargmann, “On the number of bound states in a central field of force”, Proc. Nat. Acad. Sci. USA, 38:11 (1952), 961–966 | DOI | MR

[20] F. Calogero, “Upper and lower limits for the number of bound states in a given central potential”, Commun. Math. Phys., 1:1 (1965), 80–88 | DOI | MR

[21] R. S. Maier, “On reducing the Heun equation to the hypergeometric equation”, J. Differ. Equ., 213:1 (2005), 171–203 | DOI | MR

[22] M. van Hoeij, R. Vidunas, “Belyi functions for hyperbolic hypergeometric-to-Heun transformations”, J. Algebra, 441 (2015), 609–659 | DOI | MR

[23] R. Vidunas, G. Filipuk, “Parametric transformations between the Heun and Gauss hypergeometric functions”, Funkcial. Ekvac., 56:2 (2013), 271–321 | DOI | MR

[24] R. Vidunas, G. Filipuk, “A classification of coverings yielding Heun-to-hypergeometric reductions”, Osaka J. Math., 51:4 (2014), 867–905 | MR | Zbl

[25] A. Ya. Kazakov, “Integralnaya simmetriya Eilera i deformirovannoe gipergeometricheskoe uravnenie”, Zap. nauch. sem. POMI, 393 (2011), 111–124 | DOI | MR

[26] A. Ya. Kazakov, “Monodromy of Heun equations with apparent singularities”, Internat. J. Theor. Math. Phys., 3(6) (2013), 190–196 | DOI

[27] S. Yu. Slavyanov, D. A. Shatko, A. M. Ishkhanyan, T. A. Rotinyan, “Generatsiya i udalenie lozhnykh osobennostei v lineinykh obyknovennykh differentsialnykh uravneniyakh s polinomialnymi koeffitsientami”, TMF, 189:3 (2016), 371–379 | DOI | DOI | MR

[28] S. Yu. Slavyanov, “Simmetrii i lozhnye singulyarnosti dlya prosteishikh fuksovykh uravnenii”, TMF, 193:3 (2017), 401–408 | DOI | DOI

[29] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | DOI | MR

[30] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, Eur. J. Appl. Math., 13:6 (2002), 617–639 | DOI | MR

[31] E. S. Cheb-Terrab, “Solutions for the general, confluent and biconfluent Heun equations and their connection with Abel equations”, J. Phys. A: Math. Theor., 37:42 (2004), 9923–9949, arXiv: math-ph/0404014 | DOI | MR

[32] A. Hautot, “Sur des combinaisons lineaires d'un nombre fini de fonctions transcendantes comme solutions d'équations différentielles du second ordre”, Bull. Soc. Roy. Sci. Liège, 40 (1971), 13–23 | MR

[33] R. V. Craster, V. H. Hoàng, “Applications of Fuchsian differential equations to free boundary problems”, Proc. Roy. Soc. London Ser. A, 454:1972 (1998), 1241–1252 | DOI

[34] H. V. Hoàng, J. M. Hill, J. N. Dewynne, “Pseudo-steady-state solutions for solidification in a wedge”, IMA J. Appl. Math., 60:2 (1998), 109–121 | DOI | MR

[35] R. V. Craster, “The solution of a class of free boundary problems”, Proc. Roy. Soc. London Ser. A, 453:1958 (1997), 607–630 | DOI | MR

[36] A. Fratalocchi, A. Armaroli, S. Trillo, “Time-reversal focusing of an expanding soliton gas in disordered replicas”, Phys. Rev. A, 83:5 (2011), 053846, 6 pp., arXiv: 1104.1886 | DOI

[37] Q. T. Xie, “New quasi-exactly solvable periodic potentials”, J. Phys. A, 44:28 (2011), 285302, 8 pp. | DOI | MR

[38] A. M. Ishkhanyan, “Thirty five classes of solutions of the quantum time-dependent two-state problem in terms of the general Heun functions”, Eur. Phys. J. D, 69:1 (2015), 10, 14 pp., arXiv: 1404.3922 | DOI

[39] G. S. Joyce, R. T. Delves, “Exact product forms for the simple cubic lattice Green function II”, J. Phys. A: Math. Theor., 37:20 (2004), 5417–5447 | DOI | MR

[40] G. V. Kraniotis, “The Klein–Gordon–Fock equation in the curved spacetime of the Kerr–Newman (anti) de Sitter black hole”, Class. Quantum Grav., 33:22 (2016), 225011 | DOI | MR