@article{TMF_2020_202_1_a0,
author = {A. M. Ishkhanyan},
title = {Generalized hypergeometric solutions of {the~Heun} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--13},
year = {2020},
volume = {202},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/}
}
A. M. Ishkhanyan. Generalized hypergeometric solutions of the Heun equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 202 (2020) no. 1, pp. 3-13. http://geodesic.mathdoc.fr/item/TMF_2020_202_1_a0/
[1] K. Heun, “Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten”, Math. Ann., 33:2 (1889), 161–179 | DOI | MR
[2] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, New York, 1995 | MR | Zbl
[3] S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002 | MR | Zbl
[4] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010 | MR
[5] M. Hortaçsu, “Heun functions and some of their applications in physics”, Adv. High Energy Phys., 2018 (2018), 8621573, 14 pp. | DOI
[6] The Heun Project. Heun functions, their generalizations and applications,\par, http://theheunproject.org/bibliography.html
[7] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966 | MR
[8] J. Letessier, “Co-recursive associated Jacobi polynomials”, J. Comput. Appl. Math., 57:1–2 (1995), 203–213 | DOI | MR
[9] J. Letessier, G. Valent, J. Wimp, “Some differential equations satisfied by hypergeometric functions”, Approximation and Computation: A Festschrift in Honor of Walter Gautschi, International Series of Numerical Mathematics, 119, ed. R. V. M. Zahar, Birkhäuser, Boston, MA, 1994, 371–381 | DOI | MR
[10] R. S. Maier, “$P$-symbols, Heun identities, and ${}_3F_2$ identities”, Special Functions and Orthogonal Polynomials, Contemporary Mathematics, 471, eds. D. Dominici, R. S. Maier, AMS, Providence, RI, 2008, 139–159 | DOI | MR
[11] K. Takemura, “Heun's equation, generalized hypergeometric function and exceptional Jacobi polynomial”, J. Phys. A: Math. Theor., 45:8 (2012), 085211, 14 pp., arXiv: 1106.1543 | DOI | MR
[12] T. A. Ishkhanyan, T. A. Shahverdyan, A. M. Ishkhanyan, “Expansions of the solutions of the general Heun equation governed by two-term recurrence relations for coefficients”, Adv. High Energy Phys., 2018 (2018), 4263678, 9 pp. | DOI
[13] N. Svartholm, “Die Lösung der Fuchsschen Differentialgleichung zweiter Ordnung durch hypergeometrische Polynome”, Math. Ann., 116:1 (1939), 413–421 | DOI | MR
[14] A. Erdélyi, “Certain expansions of solutions of the Heun equation”, Quart. J. Math., Oxford Ser., os-15:1 (1944), 62–69 | DOI
[15] D. Schmidt, “Die Lösung der linearen Differentialgleichung 2. Ordnung um zwei einfache Singularitäten durch Reihen nach hypergeometrischen Funktionen”, J. Reine Angew. Math., 309 (1979), 127–148 | DOI | MR
[16] A. M. Ishkhanyan, “Exact solution of the Schrödinger equation for a short-range exponential potential with inverse square root singularity”, Eur. Phys. J. Plus, 133:3 (2018), 83, 12 pp., arXiv: 1803.00565 | DOI
[17] A. M. Ishkhanyan, “The third exactly solvable hypergeometric quantum-mechanical potential”, Europhys. Lett., 115:2 (2016), 20002, 9 pp., arXiv: 1602.07685 | DOI
[18] A. M. Ishkhanyan, “Schrödinger potentials solvable in terms of the general Heun functions”, Ann. Phys., 388 (2018), 456–471 | DOI | MR
[19] V. Bargmann, “On the number of bound states in a central field of force”, Proc. Nat. Acad. Sci. USA, 38:11 (1952), 961–966 | DOI | MR
[20] F. Calogero, “Upper and lower limits for the number of bound states in a given central potential”, Commun. Math. Phys., 1:1 (1965), 80–88 | DOI | MR
[21] R. S. Maier, “On reducing the Heun equation to the hypergeometric equation”, J. Differ. Equ., 213:1 (2005), 171–203 | DOI | MR
[22] M. van Hoeij, R. Vidunas, “Belyi functions for hyperbolic hypergeometric-to-Heun transformations”, J. Algebra, 441 (2015), 609–659 | DOI | MR
[23] R. Vidunas, G. Filipuk, “Parametric transformations between the Heun and Gauss hypergeometric functions”, Funkcial. Ekvac., 56:2 (2013), 271–321 | DOI | MR
[24] R. Vidunas, G. Filipuk, “A classification of coverings yielding Heun-to-hypergeometric reductions”, Osaka J. Math., 51:4 (2014), 867–905 | MR | Zbl
[25] A. Ya. Kazakov, “Integralnaya simmetriya Eilera i deformirovannoe gipergeometricheskoe uravnenie”, Zap. nauch. sem. POMI, 393 (2011), 111–124 | DOI | MR
[26] A. Ya. Kazakov, “Monodromy of Heun equations with apparent singularities”, Internat. J. Theor. Math. Phys., 3(6) (2013), 190–196 | DOI
[27] S. Yu. Slavyanov, D. A. Shatko, A. M. Ishkhanyan, T. A. Rotinyan, “Generatsiya i udalenie lozhnykh osobennostei v lineinykh obyknovennykh differentsialnykh uravneniyakh s polinomialnymi koeffitsientami”, TMF, 189:3 (2016), 371–379 | DOI | DOI | MR
[28] S. Yu. Slavyanov, “Simmetrii i lozhnye singulyarnosti dlya prosteishikh fuksovykh uravnenii”, TMF, 193:3 (2017), 401–408 | DOI | DOI
[29] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | DOI | MR
[30] A. V. Shanin, R. V. Craster, “Removing false singular points as a method of solving ordinary differential equations”, Eur. J. Appl. Math., 13:6 (2002), 617–639 | DOI | MR
[31] E. S. Cheb-Terrab, “Solutions for the general, confluent and biconfluent Heun equations and their connection with Abel equations”, J. Phys. A: Math. Theor., 37:42 (2004), 9923–9949, arXiv: math-ph/0404014 | DOI | MR
[32] A. Hautot, “Sur des combinaisons lineaires d'un nombre fini de fonctions transcendantes comme solutions d'équations différentielles du second ordre”, Bull. Soc. Roy. Sci. Liège, 40 (1971), 13–23 | MR
[33] R. V. Craster, V. H. Hoàng, “Applications of Fuchsian differential equations to free boundary problems”, Proc. Roy. Soc. London Ser. A, 454:1972 (1998), 1241–1252 | DOI
[34] H. V. Hoàng, J. M. Hill, J. N. Dewynne, “Pseudo-steady-state solutions for solidification in a wedge”, IMA J. Appl. Math., 60:2 (1998), 109–121 | DOI | MR
[35] R. V. Craster, “The solution of a class of free boundary problems”, Proc. Roy. Soc. London Ser. A, 453:1958 (1997), 607–630 | DOI | MR
[36] A. Fratalocchi, A. Armaroli, S. Trillo, “Time-reversal focusing of an expanding soliton gas in disordered replicas”, Phys. Rev. A, 83:5 (2011), 053846, 6 pp., arXiv: 1104.1886 | DOI
[37] Q. T. Xie, “New quasi-exactly solvable periodic potentials”, J. Phys. A, 44:28 (2011), 285302, 8 pp. | DOI | MR
[38] A. M. Ishkhanyan, “Thirty five classes of solutions of the quantum time-dependent two-state problem in terms of the general Heun functions”, Eur. Phys. J. D, 69:1 (2015), 10, 14 pp., arXiv: 1404.3922 | DOI
[39] G. S. Joyce, R. T. Delves, “Exact product forms for the simple cubic lattice Green function II”, J. Phys. A: Math. Theor., 37:20 (2004), 5417–5447 | DOI | MR
[40] G. V. Kraniotis, “The Klein–Gordon–Fock equation in the curved spacetime of the Kerr–Newman (anti) de Sitter black hole”, Class. Quantum Grav., 33:22 (2016), 225011 | DOI | MR