Solutions of the discrete nonlinear Schrödinger equation with a trap
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 415-423
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain solutions of the discrete nonlinear Schrödinger equation with an impurity center in two ways. In the first of them, we construct the wave function as a series in a certain parameter. In the second, approximate method, we obtain the wave function in the continuum limit. We compare the obtained solutions with numerical results, and the relative accuracy of the solution in the form of a series does not exceed $10^{-15}$ in order of magnitude.
Keywords: discrete nonlinear Schrödinger equation, tight-binding approximation.
@article{TMF_2019_201_3_a7,
     author = {V. N. Likhachev and G. A. Vinogradov},
     title = {Solutions of the~discrete nonlinear {Schr\"odinger} equation with a~trap},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {415--423},
     year = {2019},
     volume = {201},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a7/}
}
TY  - JOUR
AU  - V. N. Likhachev
AU  - G. A. Vinogradov
TI  - Solutions of the discrete nonlinear Schrödinger equation with a trap
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 415
EP  - 423
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a7/
LA  - ru
ID  - TMF_2019_201_3_a7
ER  - 
%0 Journal Article
%A V. N. Likhachev
%A G. A. Vinogradov
%T Solutions of the discrete nonlinear Schrödinger equation with a trap
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 415-423
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a7/
%G ru
%F TMF_2019_201_3_a7
V. N. Likhachev; G. A. Vinogradov. Solutions of the discrete nonlinear Schrödinger equation with a trap. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 415-423. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a7/

[1] P. G. Kevrekidis, K. Ø. Rasmussen, A. R. Bishop, “The discrete nonlinear Schrödinger equation. A survey of recent results”, Internat. J. Modern Phys. B, 15:21 (2001), 2833–2900 | DOI

[2] H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays”, Phys. Rev. Lett., 81:16 (1998), 3383–3386 | DOI

[3] A. Trombettoni, A. Smerzi, “Discrete solitons and breathers with dilute Bose–Einstein condensates”, Phys. Rev. Lett., 86:11 (2001), 2353–2356, arXiv: cond-mat/0103368 | DOI

[4] F. Kh. Abdullaev, B. B. Baizakov, S. A. Darmanyan, V. V. Konotop, M. Salerno, “Nonlinear excitations in arrays of Bose–Einstein condensates”, Phys. Rev. A., 64:4 (2001), 043606, 10 pp., arXiv: cond-mat/0106042 | DOI

[5] P. G. Kevrekidis, The Discrete Nonlinear Schrödinger Equation. Mathematical Analysis, Numerical Computations and Physical Perspectives, Springer Tracts in Modern Physics, 232, eds. A. Fujimori, J. Kühn, Th. Müller, F. Steiner, Trümper, P. Wölfle, Springer, Berlin, Heidelberg, 2009 | DOI | MR

[6] J. C. Eilbeck, M. Johanson, “The discrete nonlinear Schrödinger equation – 20 years on”, Localization and Energy Transfer in Nonlinear Systems (Madrid, Spain, 17.06 – 21.06, 2002), eds. L. Vázquez, R. S. MacKay, M. Paz Zorzano, World Sci., Singapore, 2003, 44–67 | DOI

[7] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR

[8] R. Schärf, A. R. Bishop, “Properties of the nonlinear Schrödinger equation on a lattice”, Phys. Rev. A, 43:12 (1991), 6535–6544 | DOI | MR

[9] N. Molkenthin, S. Hu, A. J. Niemi, “Discrete nonlinear Schrödinger equation and polygonal solitons with applications to collapsed proteins”, Phys. Rev. Lett., 106:7 (2011), 078102, 4 pp. | DOI

[10] J. C. Eilbeck, P. S. Lomdahl, A. C. Scott, “The discrete self-trapping equation”, Phys. D, 16:3 (1985), 318–338 | DOI | MR

[11] A. Hasegawa, Optical Solitons in Fibers, Springer, Berlin, 1989

[12] S. V. Dmitriev, P. G. Kevrekidis, N. Yoshikawa, D. J. Frantzeskakis, “Exact stationary solutions for the translationally invariant discrete nonlinear Schrödinger equations”, J. Phys. A: Math. Theor., 40:8 (2007), 1727–1746 | DOI | MR

[13] S. V. Dmitriev, P. G. Kevrekidis, A. A. Sukhorukov, N. Yoshikawa, S. Takeno, “Discrete nonlinear Schrödinger equations free of the Peierls–Nabarro potential”, Phys. Lett. A, 356:4–5 (2006), 324–332 | DOI | MR

[14] D. E. Pelinovsky, “Translationally invariant nonlinear Schrödinger lattices”, Nonlinearity, 19:11 (2006), 2695–2716, arXiv: nlin/0603022 | DOI | MR

[15] D. E. Pelinovsky, T. R. O. Melvin, A. R. Champneys, “One-parameter localized traveling waves in non-linear Schrödinger lattices”, Phys. D, 236:1 (2007), 22–43 | DOI | MR

[16] D. E. Pelinovsky, V. M. Rothos, “Bifurcations of travelling breathers in the discrete NLS equations”, Phys. D, 202:1–2 (2005), 16–36 | DOI | MR

[17] W.-X. Qin, X. Xiao, “Homoclinic orbits and localized solutions in nonlinear Schrödinger lattices”, Nonlinearity, 20:10 (2007), 2305–2317 | DOI | MR

[18] M. Jenkinson, M. I. Weinstein, “Onsite and offsite bound states of the discrete nonlinear Schrödinger equation and the Peierls–Nabarro barrier”, Nonlinearity, 29:1 (2016), 27–86 | DOI | MR

[19] A. Khare, K. Ø. Rasmussen, M. R. Samuelsen, A. Saxena, “`Exact solutions of the saturable discrete nonlinear Schrödinger equation”, J. Phys. A: Math. Gen., 38:4 (2005), 807–814, arXiv: nlin/0409057 | DOI | MR

[20] J. Cuevas, J. C. Eilbeck, N. I. Karachalios, “Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity”, Discrete Contin. Dyn. Syst., 21:2 (2008), 445–475 | DOI | MR

[21] A. Pankov, G. Zhang, “Standing wave solutions for discrete nonlinear Schrödinger equations with unbounded potentials and saturable nonlinearity”, J. Math. Sci., 177:1 (2011), 71–82 | DOI | MR

[22] I. Aslan, “Exact and explicit solutions to the discrete nonlinear Schrödinger equation with a saturable nonlinearity”, Phys. Lett. A, 375:47 (2011), 4214–4217 | DOI

[23] L. Zhang, S. Ma, “Ground state solutions for periodic discrete nonlinear Schrödinger equations with saturable nonlinearities”, Adv. Differ. Equ., 2018:1 (2018), 176, 13 pp. | DOI | MR

[24] D. Hennig, K. Ø. Rasmussen, H. Gabriel, A. Bülow, “Solitonlike solutions of the generalized discrete nonlinear Schrödinger equation”, Phys. Rev. E, 54:5 (1996), 5788–5801 | DOI

[25] A. Khare, K. Ø. Rasmussen, M. Salerno, M. R. Samuelsen, A. Saxena, “Discrete nonlinear Schrödinger equations with arbitrarily high-order nonlinearities”, Phys. Rev. E, 74:1 (2006), 016607, 11 pp. | DOI | MR