@article{TMF_2019_201_3_a6,
author = {A. Yu. Anikin and S. Yu. Dobrokhotov and V. E. Nazaikinskii and A. V. Tsvetkova},
title = {Uniform asymptotic solution in the~form of {an~Airy} function for semiclassical bound states in one-dimensional and radially symmetric problems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {382--414},
year = {2019},
volume = {201},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a6/}
}
TY - JOUR AU - A. Yu. Anikin AU - S. Yu. Dobrokhotov AU - V. E. Nazaikinskii AU - A. V. Tsvetkova TI - Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 382 EP - 414 VL - 201 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a6/ LA - ru ID - TMF_2019_201_3_a6 ER -
%0 Journal Article %A A. Yu. Anikin %A S. Yu. Dobrokhotov %A V. E. Nazaikinskii %A A. V. Tsvetkova %T Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 382-414 %V 201 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a6/ %G ru %F TMF_2019_201_3_a6
A. Yu. Anikin; S. Yu. Dobrokhotov; V. E. Nazaikinskii; A. V. Tsvetkova. Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 382-414. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a6/
[1] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo LGU, L., 1990 | MR | MR
[2] R. E. Langer, “The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point”, Trans. Amer. Math. Soc., 67:2 (1949), 461–490 | DOI | MR
[3] V. M. Babich, “Matematicheskaya teoriya difraktsii (obzor nekotorykh issledovanii, vypolnennykh v laboratorii matematicheskikh problem geofiziki LOMI)”, Tr. MIAN SSSR, 175 (1986), 47–62
[4] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR
[5] A. Naife, Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR
[6] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii, Nauka, M., 1989 | MR | Zbl | Zbl
[7] A. M. Ilin, A. R. Danilin, Asimptoticheskie metody v analize, Fizmatlit, M., 2009
[8] S. Solimeno, B. Krozinyani, P. Di Porto, Difraktsiya i volnovodnoe rasprostranenie opticheskogo izlucheniya, Mir, M., 1989
[9] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | DOI | MR | Zbl
[10] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | MR | Zbl
[11] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965 | Zbl
[12] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | MR
[13] C. Chester, B. Friedman, F. Ursell, “An extension of the method of steepest descents”, Proc. Cambridge Philos. Soc., 53:3 (1957), 599–611 | DOI | MR
[14] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl
[15] M. V. Fedoryuk, Asimptotika. Integraly i ryady, Nauka, M., 1987 | MR
[16] M. V. Berry, C. J. Howls, “Integrals with coalescing saddles”, NIST Digital Library of Mathematical Functions. Chapter 36, eds. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders https://dlmf.nist.gov/36
[17] V. I. Arnold, “Integraly bystro ostsilliruyuschikh funktsii i osobennosti proektsii lagranzhevykh mnogoobrazii”, Funkts. analiz i ego pril., 6:3 (1972), 61–62 | MR | Zbl
[18] V. I. Arnold, “Normalnye formy funktsii vblizi vyrozhdennykh kriticheskikh tochek, gruppy Veilya $A_k$, $D_k$, $E_k$ i lagranzhevy osobennosti”, Funkts. analiz i ego pril., 6:4 (1972), 3–25 | MR | Zbl
[19] V. I. Arnold, A. N. Varchenko, S. M. Gusein-zade, Osobennosti differentsiruemykh otobrazhenii, Nauka, M., 1982 | MR
[20] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl
[21] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. III, Kvantovaya mekhanika (nerelyativistskaya teoriya), Fizmatlit, M., 2004
[22] J. Brüning, S. Yu. Dobrokhotov, K. V. Pankrashkin, “The spectral asymptotics of the two-dimensional Schrödinger operator with a strong magnetic field I”, Russ. J. Math. Phys., 9:1 (2002), 14–49 | MR
[23] R. M. Garipov, “Neustanovivshiesya volny nad podvodnym khrebtom”, Dokl. AN SSSR, 161:3 (1965), 547–550 | Zbl
[24] P. Kh. Le Blon, L. Maisek, Volny v okeane, v. 1, 2, Mir, M., 1981 | MR
[25] S. Yu. Dobrokhotov, “Asimptotiki poverkhnostnykh voln, zakhvachennykh beregami i neodnorodnostyami relefa dna”, Dokl. AN SSSR, 289:3 (1986), 575–579 | MR
[26] M. I. Katsnelson, Graphene: Carbon in Two Dimensions, Cambridge Univ. Press, Cambridge, 2012
[27] K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation”, Ann. Phys., 397 (2018), 65–135, arXiv: 1807.02056 | DOI | MR
[28] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 3, Psevdodifferentsialnye operatory, Mir, M., 1987 | MR | Zbl
[29] S. Yu. Dobrokhotov, M. Rulo, “Kvaziklassicheskii analog printsipa Mopertyui–Yakobi i ego prilozhenie k lineinoi teorii voln na vode”, Matem. zametki, 87:3 (2010), 458–463 | DOI | MR | Zbl
[30] S. Dobrokhotov, M. Rouleux, “The semi-classical Maupertuis–Jacobi correspondence for quasi-periodic Hamiltonian flows with applications to linear water waves theory”, Asymptotic Anal., 74:1–2 (2011), 33–73 | DOI | MR
[31] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR | Zbl
[32] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[33] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR
[34] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Kanonicheskii operator Maslova, odna formula Khermandera i lokalizatsiya resheniya Berri–Balazha v teorii volnovykh puchkov”, TMF, 180:2 (2014), 162–188 | DOI | DOI | MR
[35] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552 | DOI | MR
[36] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | MR
[37] S. Yu. Dobrokhotov, D. S. Minenkov, S. B. Shlosman, “Asimptotika volnovykh funktsii statsionarnogo uravneniya Shredingera v kamere Veilya”, TMF, 197:2 (2018), 269–278 | DOI | DOI
[38] B. Helffer, P. Kerdelhué, J. Sjöstrand, “Le papillon de Hofstadter revisité”, Mém. Soc. Math. France, 1990, no. 43, 87 pp., Supplément au Bulletin de la S.M.F., Tome 118, 1990, fascicule 3 | DOI | MR | Zbl
[39] V. S. Buslaev, A. A. Fedotov, “Kompleksnyi metod VKB dlya uravneniya Kharpera”, Algebra i analiz, 6:3 (1994), 59–83 | MR | Zbl
[40] A. A. Fedotov, E. V. Schetka, “Kompleksnyi metod VKB dlya raznostnogo uravneniya Shredingera, potentsial kotorogo – trigonometricheskii polinom”, Algebra i analiz, 29:2 (2017), 193–219 | DOI
[41] A. A. Fedotov, E. V. Schetka, “Kvaziklassicheskie asimptotiki spektra dokriticheskogo operatora Kharpera”, Matem. zametki, 104:6 (2018), 948–952 | DOI | DOI | MR
[42] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskiy, “Operator separation of variables for adiabatic problems in quantum and wave mechanics”, J. Engrg. Math., 55:1–4 (2006), 83–237 | DOI | MR