Strongly coupled B-type universal characters and hierarchies
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 371-381
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a solution expressed in terms of Schur $Q$-functions of a strongly coupled B-type Kadomtsev–Petviashvili hierarchy. As a generalization of these functions, we introduce universal characters satisfying the bilinear equations of a new infinite-dimensional integrable system called the strongly coupled B-type universal character hierarchy.
Keywords: strongly coupled BKP hierarchy, Schur $Q$-function, B-type universal character, strongly coupled B-type universal character hierarchy.
@article{TMF_2019_201_3_a5,
     author = {Chuanzhong Li},
     title = {Strongly coupled {B-type} universal characters and hierarchies},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {371--381},
     year = {2019},
     volume = {201},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a5/}
}
TY  - JOUR
AU  - Chuanzhong Li
TI  - Strongly coupled B-type universal characters and hierarchies
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 371
EP  - 381
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a5/
LA  - ru
ID  - TMF_2019_201_3_a5
ER  - 
%0 Journal Article
%A Chuanzhong Li
%T Strongly coupled B-type universal characters and hierarchies
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 371-381
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a5/
%G ru
%F TMF_2019_201_3_a5
Chuanzhong Li. Strongly coupled B-type universal characters and hierarchies. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 371-381. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a5/

[1] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-Linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Satō, M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[2] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR

[3] T. Tsuda, “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23:5 (2012), 1250010, 59 pp. | DOI | MR

[4] I. A. B. Strachan, D. F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56:11 (2015), 113509, 13 pp., arXiv: 1511.05245 | DOI | MR

[5] Chuan-Chzhun Li, Tszin-Sun Khe, “Simmetriya Virasoro mnogokomponentnoi ierarkhii Kadomtseva–Petviashvili so svyazyami i ee integriruemoi diskretizatsii”, TMF, 187:3 (2016), 487–504 | DOI | DOI | MR

[6] C. Z. Li, “Gauge transformation and symmetries of the commutative multicomponent BKP hierarchy”, J. Phys. A: Math. Theor., 49:1 (2016), 015203, 14 pp. | DOI | MR

[7] X. P. Yang, C. Z. Li, “Bäcklund transformations of $Z_n$-sine-Gordon systems”, Modern Phys. Lett. B, 31:17 (2017), 1750189, 16 pp., arXiv: 1704.04412 | DOI | MR

[8] H. F. Wang, C. Z. Li, “Affine Weyl group symmetries of Frobenius Painlevé equations”, Math. Methods Appl. Sci. (to appear)

[9] C. Z. Li, “Coupled universal characters and coupled integrable hierarchies”, Lett. Math. Phys., submitted

[10] Y. Ogawa, “Generalized Q-Functions and UC Hierarchy of B-Type”, Tokyo J. Math., 32:2 (2009), 349–380 | DOI | MR

[11] T. Tsuda, “On an integrable system of $q$-difference equations satisfied by the universal characters: its Lax formalism and an application to $q$-Painlevé equations”, Commun. Math. Phys., 293:2 (2010), 347–359, arXiv: 0901.3900 | DOI | MR

[12] K. Sawada, T. Kotera, “A method for finding $N$-soliton solutions of the K.d.V. equation and K.d.V.-like equation”, Prog. Theor. Phys., 51:5 (1974), 1355–1367 | DOI | MR