@article{TMF_2019_201_3_a4,
author = {A. Mirza and M. ul Hassan},
title = {Bilinearization and soliton solutions of a~supersymmetric multicomponent coupled dispersionless integrable system},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {361--370},
year = {2019},
volume = {201},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a4/}
}
TY - JOUR AU - A. Mirza AU - M. ul Hassan TI - Bilinearization and soliton solutions of a supersymmetric multicomponent coupled dispersionless integrable system JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 361 EP - 370 VL - 201 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a4/ LA - ru ID - TMF_2019_201_3_a4 ER -
%0 Journal Article %A A. Mirza %A M. ul Hassan %T Bilinearization and soliton solutions of a supersymmetric multicomponent coupled dispersionless integrable system %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 361-370 %V 201 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a4/ %G ru %F TMF_2019_201_3_a4
A. Mirza; M. ul Hassan. Bilinearization and soliton solutions of a supersymmetric multicomponent coupled dispersionless integrable system. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 361-370. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a4/
[1] H. J. W. Müller-Kirsten, A. Wiedemann, Introduction to Supersymmetry, World Scientific Lecture Notes in Physics, 80, World Sci., Singapore, 2010 | DOI | MR
[2] Yu. Vess, Dzh. Begger, Supersimmetriya i supergravitatsiya, Mir, M., 1986 | MR | MR | Zbl
[3] P. G. O. Freund, Introduction to Supersymmetry, Cambridge Univ. Press, Cambridge, 1988 | DOI | MR
[4] J. Wess, B. Zumino, “Supergauge transformations in four dimensions”, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR
[5] A. Salam, J. Strathdee, “Super-gauge transformations”, Nucl. Phys. B, 76:3 (1974), 477–482 | DOI | MR
[6] P. Di Vecchia, S. Ferrara, “Classical solutions in two-dimensional supersymmetric field theories”, Nucl. Phys. B, 130:1 (1977), 93–104 | DOI | MR
[7] M. Chaichain, P. P. Kulish, “On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations”, Phys. Lett. B, 78:4 (1978), 413–416 | DOI
[8] P. Mathieu, “Supersymmetric extension of the Korteweg–de Vries equation”, J. Math. Phys., 29:11 (1988), 2499–2506 | DOI | MR | Zbl
[9] Yu. I. Manin, A. O. Radul, “A supersymmetric extension of the Kadomtsev–Petviashvili hierarchy”, Commun. Math. Phys., 98:1 (1985), 65–77 | DOI | MR | Zbl
[10] G. H. M. Roelofs, P. H. M. Kersten, “Supersymmetric extensions of the nonlinear Schrödinger equation: symmetries and coverings”, J. Math. Phys., 33:6 (1992), 2185–2206 | DOI | MR | Zbl
[11] P. P. Kulish, “Analog uravneniya Kortevega–de Friza dlya superkonformnoi algebry”, Zap. nauchn. sem. LOMI, 155, 142–149 | DOI
[12] A. Yu. Orlov, “Vertex operator, $\partial$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics, Proceedings of the 3rd International Workshop on Nonlinear and Turbulent Processes in Physics (Kiev, April 13–25, 1987), v. 1, eds. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR | Zbl
[13] T. G. Khovanova, “Superuravnenie Kortevega–de Friza, svyazannoe s superalgebroi Li strunnoi teorii Nevë–Shvartsa-2”, TMF, 72:2 (1987), 306–312 | MR | Zbl
[14] M. J. Bergvelt, J. M. Rabin, “Supercurves, their Jacobians, and super KP equations”, Duke Math. J., 98:1 (1999), 1–57 | DOI | MR
[15] P. P. Kulish, A. M. Tseitlin, “Teoretiko-gruppovaya struktura i metod obratnoi zadachi rasseyaniya dlya uravneniya super-KdF”, Zap. nauchn. sem. POMI, 291 (2002), 185–205 | DOI | MR | Zbl
[16] I. Ch. Khon, En-Gui Fan, “Superkvaziperiodicheskie volnovye resheniya i asimptoticheskii analiz $\mathcal N=1$ supersimmetrichnogo uravneniya tipa Kortevega–de Friza”, TMF, 166:3 (2011), 366–387 | DOI | DOI
[17] I. M. Krichever, “The dispersionless Lax equation and topological minimal models”, Commun. Math. Phys., 143:2 (1992), 415–429 | DOI | MR
[18] R. Carroll, Y. Kodama, “Solution of the dispersionless Hirota equations”, J. Phys. A: Math. Gen., 28:22 (1995), 6373–6388, arXiv: hep-th/9506007 | DOI | MR
[19] S. Aoyama, Y. Kodama, “Topological conformal field theory with a rational W potential and the dispersionless KP hierarchy”, Modern Phys. Lett. A, 9:27 (1994), 2481–2492, arXiv: hep-th/9404011 | DOI | MR
[20] K. Takasaki, T. Takebe, “Integrable hierarchies and dispersionless limit”, Rev. Math. Phys., 7:5 (1995), 743–808 | DOI | MR
[21] K. Takasaki, “Dispersionless Toda hierarchy and two-dimensional string theory”, Commun. Math. Phys., 170:1 (1995), 101–116, arXiv: hep-th/9403190 | DOI | MR
[22] P. B. Wiegmann, A. Zabrodin, “Conformal maps and dispersionless integrable hierarchies”, Commun. Math. Phys, 213:3 (2000), 523–538, arXiv: hep-th/9909147 | DOI | MR
[23] M. Dunajski, “An interpolating dispersionless integrable system”, J. Phys. A: Math. Theor., 41:31 (2008), 315202, 9 pp. | DOI | MR
[24] K. Konno, H. Oono, “New coupled integrable dispersionless equations”, J. Phys. Soc. Japan, 63:2 (1994), 377–378 | DOI
[25] K. Konno, “Integrable coupled dispersionless equations”, Appl. Anal., 57:1–2 (1995), 209–220 | DOI | MR
[26] R. Hirota, S. Tsujimoto, “Note on ‘New coupled integrable dispersionless equations’ ”, J. Phys. Soc. Japan, 63:9 (1994), 3533 | DOI
[27] H. Kakuhata, K. Konno, “A generalization of coupled integrable, dispersionless system”, J. Phys. Soc. Japan, 65:2 (1996), 340–341 | DOI | MR
[28] H. Kakuhata, K. Konno, “Lagrangian, Hamiltonian and conserved quantities for coupled integrable dispersionless equations”, J. Phys. Soc. Japan, 65:1 (1995), 1–2 | DOI | MR
[29] H. Kakuhata, K. Konno, “Canonical formulation of generalized coupled dispersionless system”, J. Phys. A: Math. Gen., 30:12 (1997), L401–L407 | DOI | MR
[30] T. Alagesan, K. Porsezian, “Painlevé analysis and the integrability properties of coupled integrable dispersionless equations”, Chaos Solitons Fractals, 7:8 (1996), 1209–1212 | DOI | MR | Zbl
[31] T. Alagesan, K. Porsezian, “Singularity structure analysis and Hirota's bilinearisation of the coupled integrable dispersionless equations”, Chaos Solitons Fractals, 8:10 (1997), 1645–1650 | DOI | MR | Zbl
[32] T. Alagesan, Y. Chung, K. Nakkeeran, “Bäcklund transformation and soliton solutions for the coupled dispersionless equations”, Chaos Solitons Fractals, 21:1 (2004), 63–67 | DOI | MR | Zbl
[33] A. Chen, X. Li, “Soliton solutions of the coupled dispersionless equation”, Phys. Lett. A, 370:3–4 (2007), 281–286 | DOI | MR
[34] Y. Xue-Lin, C. Yu-Fu, “Soliton solutions to coupled integrable dispersionless equations”, Commun. Theor. Phys., 50:1 (2008), 43–47 | DOI | MR
[35] M. Hassan, “Darboux transformation of the generalized coupled dispersionless integrable system”, J. Phys. A: Math. Theor., 42:6 (2009), 065203, 11 pp., arXiv: 0912.1671 | DOI | MR
[36] N. Mushahid, M. ul Hassan, “On the dressing method for the generalized coupled dispersionless integrable system”, Modern Phys. Lett. A, 28:20 (2013), 1350088, 20 pp. | DOI | MR
[37] L. Vinet, G.-F. Yu, “Discrete analogues of the generalized coupled integrable dispersionless equations”, J. Phys. A: Math. Theor., 46:17 (2013), 175205, 16 pp. | DOI | MR
[38] S. Shen, B.-F. Feng, Y. Ohta, “From the real and complex coupled dispersionless equations to the real and complex short pulse equations”, Stud. Appl. Math., 136:1 (2016), 64–88 | DOI | MR
[39] A. Mirza, M. ul Hassan, “Bilinearization and soliton solutions of the $N=1$ supersymmetric coupled dispersionless integrable system”, J. Nonlinear Math. Phys., 24:1 (2017), 107–115 | DOI | MR
[40] A. Mirza, M. Khassan, “O svoistvakh integriruemosti supersimmetrichnoi bezdispersionnoi integriruemoi sistemy so vzaimodeistviem”, TMF, 195:3 (2018), 381–390 | DOI | DOI
[41] G.-F. Yu, “Soliton solutions of a multi-component derivative coupled integrable dispersionless equations”, J. Phys. Soc. Japan, 83:7 (2014), 074003, 4 pp. | DOI
[42] A. S. Carstea, “Extension of the bilinear formalism to supersymmetric KdV-type equations”, Nonlinearity, 13:5 (2000), 1645–1656 | DOI | MR
[43] A. S. Carstea, A. Ramani, B. Grammaticos, “Constructing the soliton solutions for the $N=1$ supersymmetric KdV hierarchy”, Nonlinearity, 14:5 (2001), 1419–1424 | DOI | MR
[44] B. Grammaticos, A. Ramani, A. S. Carstea, “Bilinearization and soliton solutions of the $N=1$ supersymmetric sine-Gordon equation”, J. Physics A: Math. Gen., 34:23 (2001), 4881–4886 | DOI | MR
[45] Q. P. Liu, X.-B. Hu, M.-X. Zhang, “Supersymmetric modified Korteweg–de Vries equation: bilinear approach”, Nonlinearity, 18:4 (2005), 1597–1604 | DOI | MR
[46] Q. P. Liu, X.-X. Yang, “Supersymmetric two-boson equation: bilinearization and solutions”, Phys. Lett. A, 351:3 (2006), 131–135 | DOI | MR
[47] S. Ghosh, D. Sarma, Bilinearization of supersymmetric KP hierarchies associated with non-trivial flows, arXiv: nlin/0107019
[48] S. Ghosh, D. Sarma, “Bilinearization of $N=1$ supersymmetric modified KdV equations”, Nonlinearity, 16:2 (2002), 411–418, arXiv: nlin/0202031) | DOI | MR