Mots-clés : bifurcation, equation in quasinormal form.
@article{TMF_2019_201_3_a3,
author = {A. T. Il'ichev},
title = {Physical parameters of solitary wave packets in shallow basins under ice cover},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {347--360},
year = {2019},
volume = {201},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a3/}
}
A. T. Il'ichev. Physical parameters of solitary wave packets in shallow basins under ice cover. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a3/
[1] A. V. Marchenko, “O dlinnykh volnakh v melkoi zhidkosti pod ledyanym pokrovom”, PMM, 52:2 (1988), 230–234 | DOI | Zbl
[2] R. Grimshaw, B. Malomed, E. Benilov, “Solitary waves with damped oscillatory tails: an analysis of the fifth-order Korteweg–de Vries equation”, Phys. D, 77:4 (1994), 473–485 | DOI | MR
[3] A. Korobkin, E. I. Părău, J.-M. Vanden-Broeck, “The mathematical challenges and modelling of hydroelasticity”, Phil. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2803–2812 | DOI | MR
[4] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 1. High-order series solution”, J. Fluid Mech., 169 (1986), 409–428 | DOI | MR
[5] L. K. Forbes, “Surface waves of large amplitude beneath an elastic sheet. Part 2. Galerkin solutions”, J. Fluid Mech., 188 (1988), 491–508 | DOI | MR
[6] G. Iooss, M. Adelmeyer, Topics in Bifurcation Theory and Applications, Advanced Series in Nonlinear Dynamics, 3, World Sci., Singapore, 1992 | DOI | MR
[7] K. Kirchgässner, “Wave-solutions of reversible systems and applications”, J. Diff. Equ., 45:1 (1982), 113–127 | DOI | MR
[8] A. Mielke, “Reduction of quasilinear elliptic equations in cylindrical domains with applications”, Math. Methods Appl. Sci., 10:1 (1988), 51–66 | DOI | MR
[9] A. T. Ilichev, “Uedinennye volny s dispersiei i dissipatsiei (obzor)”, Izv. RAN. MZhG, 2000, no. 2, 3–27 | MR
[10] E. I. Părău, F. Dias, “Nonlinear effects in the response of a floating ice plate to a moving load”, J. Fluid Mech., 460 (2002), 281–305 | DOI | MR
[11] P. A. Milewskii, J.-M. Vanden-Broeck, Z. Wang, “Hydroelastic solitary waves in deep water”, J. Fluid Mech., 2011, 628–640 | DOI | MR
[12] J.-M. Vanden-Broeck, E. I. Părău, “Two-dimensional generalized solitary waves and periodic waves under an ice sheet”, Phil. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2957–2972 | DOI | MR
[13] E. I. Părău, J.-M. Vanden-Broeck, “Three-dimensional waves beneath an ice sheet due to a steadily moving pressure”, Phil. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2973–2988 | DOI | MR
[14] A. T. Ilichev, “Solitonopodobnye struktury na poverkhnosti razdela voda–led”, UMN, 70:6(426) (2015), 85–138 | DOI | DOI | MR | Zbl
[15] P. I. Plotnikov, J. F. Toland, “Modelling nonlinear hydroelastic waves”, Phil. Trans. Roy. Soc. London Ser. A, 369:1947 (2011), 2942–2956 | DOI | MR
[16] A. Müller, R. Ettema, “Dynamic response of an ice-breaker hull to ice breaking”, Proceedings of the 7th IAHR International Symposium on Ice, v. II, Hamburg, W. Germany, 1984, 287–296
[17] P. Guyenne, E. I. Părău, “Computations of fully nonlinear hydroelastic solitary waves on deep water”, J. Fluid Mech., 713 (2012), 307–329 | DOI | MR
[18] Z. Wang, J.-M. Vanden-Boeck, P. A. Milevski, “Two-dimensional flexural-gravity waves of finite amplitude in deep water”, IMA J. Appl. Math., 78:4 (2013), 750–761 | DOI | MR
[19] P. Guyenne, E. I. Părău, “Finite-depth effects on solitary waves in a floating ice sheet”, J. Fluids Struct., 49 (2014), 242–262 | DOI
[20] Z. Wang, E. I. Părău, P. A. Milewski, J.-M. Vanden-Broeck, “Numerical study of interfacial solitary waves propagating under an elastic sheet”, Proc. Roy. Soc. London Ser. A, 470:2168 (2014), 20140111, 17 pp. | DOI | MR
[21] E. I. Părău, “Solitary interfacial hydroelastic waves”, Phil. Trans. Roy. Soc. A, 376:2111 (2017), 20170099, 11 pp. | DOI
[22] T. Gao, J.-M. Vanden-Broeck, Z. Wang, “Numerical computations of two-dimensional flexural-gravity solitary waves on water of arbitrary depth”, IMA J. Appl. Math., 83:3, 436–450 | DOI | MR
[23] O. Trichtchenko, E. I. Părău, J.-M. Vanden-Broeck, P. A. Milewskii, “Solitary flexural, gravity waves in three dimensions”, Phil. Trans. Roy. Soc. A, 376:2129 (2018), 20170345, 14 pp. | DOI | MR
[24] A. T. Il'ichev, V. Ja. Tomashpolskii, “Characteristic parameters of nonlinear surface envelope waves beneath an ice cover under pre-stress”, Wave Motion, 86 (2019), 11–20 | DOI | MR
[25] T. Kawahara, “Oscillatory solitary waves in dispersive media”, J. Phys. Soc. Japan, 33 (1972), 260–264 | DOI
[26] F. Dias, E. A. Kuznetsov, “On the nonlinear stability of solitary wave solutions of the fifth-order Korteweg–de Vries equation”, Phys. Lett. A, 263:1–2 (1999), 98–104 | DOI | MR
[27] G. Iooss, M. C. Pérouème, “Perturbed homoclinic solutions in reversible 1:1 resonance vector fields”, J. Differ. Equ., 102:1 (1993), 62–88 | DOI | MR
[28] F. Dias, G. Iooss, “Capillary-gravity solitary waves with damped oscillations”, Phys. D, 65:4 (1993), 399–423 | DOI | MR