@article{TMF_2019_201_3_a2,
author = {L. V. Bogdanov},
title = {Matrix extension of {the~Manakov{\textendash}Santini} system and an~integrable chiral model on {an~Einstein{\textendash}Weyl} background},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {337--346},
year = {2019},
volume = {201},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/}
}
TY - JOUR AU - L. V. Bogdanov TI - Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 337 EP - 346 VL - 201 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/ LA - ru ID - TMF_2019_201_3_a2 ER -
%0 Journal Article %A L. V. Bogdanov %T Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 337-346 %V 201 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/ %G ru %F TMF_2019_201_3_a2
L. V. Bogdanov. Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/
[1] M. Dunajski, E. V. Ferapontov, B. Kruglikov, “On the Einstein–Weyl and conformal self-duality equations”, J. Math. Phys., 56:8 (2015), 083501, 10 pp., arXiv: 1406.0018 | DOI | MR
[2] R. Penrose, “Nonlinear gravitons and curved twistor theory”, Gen. Rel. Grav., 7:1 (1976), 31–52 | DOI | MR
[3] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362:1711 (1978), 425–461 | DOI | MR
[4] L. V. Bogdanov, V. S. Dryuma, S. V. Manakov, “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy”, J. Phys. A: Math. Theor., 40:48 (2007), 14383–14393, arXiv: 0707.1675 | DOI | MR
[5] L. V. Bogdanov, “Interpoliruyuschie differentsialnye reduktsii mnogomernykh integriruemykh ierarkhii”, TMF, 167:3 (2011), 354–363 | DOI | DOI | MR
[6] L. V. Bogdanov, “SDYM equations on the self-dual background”, J. Phys. A: Math. Theor., 50:19 (2017), 19LT02, 9 pp. | DOI | MR
[7] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl
[8] D. M. J. Calderbank, “Integrable background geometries”, SIGMA, 10 (2014), 034, 51 pp. | DOI | MR
[9] S. V. Manakov, P. M. Santini, “The Cauchy problem on the plane for the dispersionless Kadomtsev–Petviashvili equation”, Pisma v ZhETF, 83:10 (2006), 534–538 | DOI
[10] S. V. Manakov, P. M. Santini, “Ierarkhiya integriruemykh uravnenii v chastnykh proizvodnykh v razmernosti $2+1$, assotsiirovannaya s odnoparametricheskimi semeistvami odnomernykh vektornykh polei”, TMF, 152:1 (2007), 147–156 | DOI | DOI | MR | Zbl
[11] R. S. Ward, “Soliton solutions in an integrable chiral model in $2+1$ dimensions”, J. Math. Phys., 29:2 (1988), 386–389 | DOI | MR
[12] M. Dunajski, Solitons, Instantons, and Twistors, Oxford Graduate Texts in Mathematics, 19, Oxford Univ. Press, Oxford, 2010 | MR
[13] L. V. Bogdanov, “Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy”, J. Phys. A: Math. Theor., 43:43 (2010), 434008, 8 pp. | DOI | MR
[14] M. Dunajski, “An interpolating dispersionless integrable system”, J. Phys. A: Math. Theor., 41:31 (2008), 315202, 9 pp. | DOI | MR
[15] L. V. Bogdanov, “O klasse mnogomernykh integriruemykh ierarkhii i ikh reduktsiyakh”, TMF, 160:1 (2009), 15–22 | DOI | DOI | MR | Zbl