Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 337-346
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce an integrable matrix extension of the Manakov–Santini system and show that it describes a $(2+1)$-dimensional integrable chiral model in the Einstein–Weyl space. We apply a dressing scheme for the extended Manakov–Santini system and define an extended hierarchy. We also consider a matrix extension of a Toda-type system associated with another local form of the Einstein–Weyl geometry.
Keywords: Manakov–Santini system, Einstein–Weyl geometry, integrable chiral model, dispersionless integrable system.
@article{TMF_2019_201_3_a2,
     author = {L. V. Bogdanov},
     title = {Matrix extension of {the~Manakov{\textendash}Santini} system and an~integrable chiral model on {an~Einstein{\textendash}Weyl} background},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--346},
     year = {2019},
     volume = {201},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/}
}
TY  - JOUR
AU  - L. V. Bogdanov
TI  - Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 337
EP  - 346
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/
LA  - ru
ID  - TMF_2019_201_3_a2
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%T Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 337-346
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/
%G ru
%F TMF_2019_201_3_a2
L. V. Bogdanov. Matrix extension of the Manakov–Santini system and an integrable chiral model on an Einstein–Weyl background. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/

[1] M. Dunajski, E. V. Ferapontov, B. Kruglikov, “On the Einstein–Weyl and conformal self-duality equations”, J. Math. Phys., 56:8 (2015), 083501, 10 pp., arXiv: 1406.0018 | DOI | MR

[2] R. Penrose, “Nonlinear gravitons and curved twistor theory”, Gen. Rel. Grav., 7:1 (1976), 31–52 | DOI | MR

[3] M. F. Atiyah, N. J. Hitchin, I. M. Singer, “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362:1711 (1978), 425–461 | DOI | MR

[4] L. V. Bogdanov, V. S. Dryuma, S. V. Manakov, “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy”, J. Phys. A: Math. Theor., 40:48 (2007), 14383–14393, arXiv: 0707.1675 | DOI | MR

[5] L. V. Bogdanov, “Interpoliruyuschie differentsialnye reduktsii mnogomernykh integriruemykh ierarkhii”, TMF, 167:3 (2011), 354–363 | DOI | DOI | MR

[6] L. V. Bogdanov, “SDYM equations on the self-dual background”, J. Phys. A: Math. Theor., 50:19 (2017), 19LT02, 9 pp. | DOI | MR

[7] V. E. Zakharov, A. B. Shabat, “Integrirovanie nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. II”, Funkts. analiz i ego pril., 13:3 (1979), 13–22 | DOI | MR | Zbl

[8] D. M. J. Calderbank, “Integrable background geometries”, SIGMA, 10 (2014), 034, 51 pp. | DOI | MR

[9] S. V. Manakov, P. M. Santini, “The Cauchy problem on the plane for the dispersionless Kadomtsev–Petviashvili equation”, Pisma v ZhETF, 83:10 (2006), 534–538 | DOI

[10] S. V. Manakov, P. M. Santini, “Ierarkhiya integriruemykh uravnenii v chastnykh proizvodnykh v razmernosti $2+1$, assotsiirovannaya s odnoparametricheskimi semeistvami odnomernykh vektornykh polei”, TMF, 152:1 (2007), 147–156 | DOI | DOI | MR | Zbl

[11] R. S. Ward, “Soliton solutions in an integrable chiral model in $2+1$ dimensions”, J. Math. Phys., 29:2 (1988), 386–389 | DOI | MR

[12] M. Dunajski, Solitons, Instantons, and Twistors, Oxford Graduate Texts in Mathematics, 19, Oxford Univ. Press, Oxford, 2010 | MR

[13] L. V. Bogdanov, “Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy”, J. Phys. A: Math. Theor., 43:43 (2010), 434008, 8 pp. | DOI | MR

[14] M. Dunajski, “An interpolating dispersionless integrable system”, J. Phys. A: Math. Theor., 41:31 (2008), 315202, 9 pp. | DOI | MR

[15] L. V. Bogdanov, “O klasse mnogomernykh integriruemykh ierarkhii i ikh reduktsiyakh”, TMF, 160:1 (2009), 15–22 | DOI | DOI | MR | Zbl