Matrix extension of the~Manakov--Santini system and an~integrable chiral model on an~Einstein--Weyl background
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 337-346

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce an integrable matrix extension of the Manakov–Santini system and show that it describes a $(2+1)$-dimensional integrable chiral model in the Einstein–Weyl space. We apply a dressing scheme for the extended Manakov–Santini system and define an extended hierarchy. We also consider a matrix extension of a Toda-type system associated with another local form of the Einstein–Weyl geometry.
Keywords: Manakov–Santini system, Einstein–Weyl geometry, integrable chiral model, dispersionless integrable system.
@article{TMF_2019_201_3_a2,
     author = {L. V. Bogdanov},
     title = {Matrix extension of {the~Manakov--Santini} system and an~integrable chiral model on {an~Einstein--Weyl} background},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--346},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/}
}
TY  - JOUR
AU  - L. V. Bogdanov
TI  - Matrix extension of the~Manakov--Santini system and an~integrable chiral model on an~Einstein--Weyl background
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 337
EP  - 346
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/
LA  - ru
ID  - TMF_2019_201_3_a2
ER  - 
%0 Journal Article
%A L. V. Bogdanov
%T Matrix extension of the~Manakov--Santini system and an~integrable chiral model on an~Einstein--Weyl background
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 337-346
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/
%G ru
%F TMF_2019_201_3_a2
L. V. Bogdanov. Matrix extension of the~Manakov--Santini system and an~integrable chiral model on an~Einstein--Weyl background. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a2/