Spaces of type $S$ and deformation quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 315-336
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the properties of the Gelfand–Shilov spaces $S^{b_n}_{a_k}$ in the context of deformation quantization. Our main result is a characterization of their corresponding multiplier algebras with respect to a twisted convolution, which is given in terms of the inclusion relation between these algebras and the duals of the spaces of pointwise multipliers with an explicit description of these functional spaces. The proof of the inclusion theorem essentially uses the equality $S^{b_n}_{a_k}=S^{b_n}\cap S_{a_k}$.
Mots-clés : deformation quantization, Weyl symbol, multiplier algebra, Weyl symbol, multiplier algebra
Keywords: Moyal product, Gelfand–Shilov spacedeformation quantization, Moyal product, Gelfand–Shilov space.
@article{TMF_2019_201_3_a1,
     author = {M. A. Soloviev},
     title = {Spaces of type $S$ and deformation quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--336},
     year = {2019},
     volume = {201},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Spaces of type $S$ and deformation quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 315
EP  - 336
VL  - 201
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/
LA  - ru
ID  - TMF_2019_201_3_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Spaces of type $S$ and deformation quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 315-336
%V 201
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/
%G ru
%F TMF_2019_201_3_a1
M. A. Soloviev. Spaces of type $S$ and deformation quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 315-336. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/

[1] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | MR

[2] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR

[3] M. W. Wong, Weyl Transforms, Springer, New York, 1998 | MR

[4] M. de Gosson, Symplectic Geometry and Quantum Mechanics, Operator Theory: Advances and Applications, 166, Birkhäuser, Basel, 2006 | MR

[5] M. A. Antonets, “Klassicheskii predel kvantovaniya Veilya”, TMF, 38:3 (1979), 331–344 | DOI | MR

[6] J. M. Maillard, “On the twisted convolution product and the Weyl transformation of tempered distributions”, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR

[7] J. B. Kammerer, “Analysis of the Moyal product in flat space”, J. Math. Phys., 27:2 (1986), 529–535 | DOI | MR

[8] J. M. Gracia-Bondia, J. C. Várilly, “Algebras of distributions suitable for phase-space quantum mechanics. I”, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR

[9] J. C. Várilly, J. M. Gracia-Bondia, “Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra”, J. Math. Phys., 29:4 (1988), 880–887 | DOI | MR

[10] J. M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, “Infinitely many star products to play with”, JHEP, 04 (2002), 026, 35 pp. | DOI | MR

[11] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, “Moyal planes are spectral triplets”, Commun. Math. Phys., 246:3 (2004), 569–623 | DOI | MR

[12] M. A. Solovev, “Zvezdochnye proizvedeniya na lineinykh simplekticheskikh prostranstvakh. Skhodimost, predstavleniya, rasshireniya,”, TMF, 181:3 (2014), 568–596 | DOI | DOI | MR

[13] M. A. Soloviev, “Noncommutativity and $\theta$-locality”, J. Phys A: Math. Theor., 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR

[14] M. Chaichian, M. Mnatsakanova, A. Tureanu, Yu. Vernov, “Test function space in noncommutative quantum field theory”, JHEP, 09 (2008), 125, 11 pp., arXiv: 0706.1712 | DOI | MR

[15] M. A. Solovev, “Prostranstvenno-podobnaya asimptotika vakuumnykh srednikh v nelokalnoi teorii polya”, TMF, 52:3 (1982), 363–374 | DOI | MR

[16] B. Prangoski, “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions”, J. Pseudo-Differ. Oper. Appl., 4:4 (2013), 495–549 | DOI | MR

[17] N. Teofanov, “Gelfand–Shilov spaces and localization operators”, Funct. Anal. Approx. Comput., 7:2 (2015), 135–158 | MR

[18] M. Cappiello, J. Toft, “Pseudo-differential operators in a Gelfand–Shilov setting”, Math. Nachr., 290:5–6 (2017), 738–755 | DOI | MR

[19] M. A. Soloviev, “Moyal multiplier algebras of the test function spaces of type $S$”, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR

[20] V. P. Palamodov, “Preobrazovaniya Fure bystro rastuschikh beskonechno differentsiruemykh funktsii”, Tr. MMO, 11 (1962), 309–350 | MR | Zbl

[21] M. A. Solovev, “Prostranstva tipa $S$ kak topologicheskie algebry otnositelno skruchennoi svertki i zvezdochnogo proizvedeniya”, Tr. MIAN, 306 (2019), 235–257

[22] A. I. Kashpirovskii, “O sovpadenii prostranstv $S_\alpha^\beta$ i $S_\alpha\cap S^\beta$”, Funkts. analiz i ego pril., 14:2 (1980), 60 | DOI | MR | Zbl

[23] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955 | MR | MR | Zbl

[24] J. Chung, S.-Y. Chung, D. Kim, “Characterization of the Gel'fand–Shilov spaces via Fourier transforms”, Proc. Amer. Math. Soc., 124:7 (1996), 2101–2108 | DOI | MR

[25] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4(208) (1979), 97–131 | DOI | MR | Zbl

[26] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2, Clarendon, Oxford, 1997 | MR

[27] G. Köthe, Topological Vector Spaces. II, Grundlehren der Mathematischen Wissenschaften, 237, Springer, New York, 1979 | MR

[28] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[29] H. Komatsu, “Ultradistributions. I. Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 20:1 (1973), 25–105 | MR | Zbl

[30] M. A. Solovev, “Algebry probnykh funktsii so zvezdochnym proizvedeniem”, TMF, 153:1 (2007), 3–17, arXiv: 0708.0811 | DOI | DOI | MR | Zbl

[31] M. Błaszak, Z. Domański, “Phase space quantum mechanics”, Ann. Phys., 327:2 (2012), 167–211 | DOI | MR

[32] M. A. Solovev, “Obobschennoe sootvetstvie Veilya i algebry moialovskikh multiplikatorov”, TMF, 173:1 (2012), 38–59 | DOI | DOI | MR