Spaces of type $S$ and deformation quantization
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 315-336

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the Gelfand–Shilov spaces $S^{b_n}_{a_k}$ in the context of deformation quantization. Our main result is a characterization of their corresponding multiplier algebras with respect to a twisted convolution, which is given in terms of the inclusion relation between these algebras and the duals of the spaces of pointwise multipliers with an explicit description of these functional spaces. The proof of the inclusion theorem essentially uses the equality $S^{b_n}_{a_k}=S^{b_n}\cap S_{a_k}$.
Mots-clés : deformation quantization, Weyl symbol, Weyl symbol
Keywords: Moyal product, multiplier algebra, Gelfand–Shilov spacedeformation quantization, Moyal product, multiplier algebra, Gelfand–Shilov space.
@article{TMF_2019_201_3_a1,
     author = {M. A. Soloviev},
     title = {Spaces of type $S$ and deformation quantization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {315--336},
     publisher = {mathdoc},
     volume = {201},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - Spaces of type $S$ and deformation quantization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 315
EP  - 336
VL  - 201
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/
LA  - ru
ID  - TMF_2019_201_3_a1
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T Spaces of type $S$ and deformation quantization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 315-336
%V 201
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/
%G ru
%F TMF_2019_201_3_a1
M. A. Soloviev. Spaces of type $S$ and deformation quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 315-336. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/