Keywords: Moyal product, Gelfand–Shilov spacedeformation quantization, Moyal product, Gelfand–Shilov space.
@article{TMF_2019_201_3_a1,
author = {M. A. Soloviev},
title = {Spaces of type $S$ and deformation quantization},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {315--336},
year = {2019},
volume = {201},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/}
}
M. A. Soloviev. Spaces of type $S$ and deformation quantization. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 3, pp. 315-336. http://geodesic.mathdoc.fr/item/TMF_2019_201_3_a1/
[1] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, v. 2, Prostranstva osnovnykh i obobschennykh funktsii, Fizmatgiz, M., 1958 | MR | MR
[2] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | MR
[3] M. W. Wong, Weyl Transforms, Springer, New York, 1998 | MR
[4] M. de Gosson, Symplectic Geometry and Quantum Mechanics, Operator Theory: Advances and Applications, 166, Birkhäuser, Basel, 2006 | MR
[5] M. A. Antonets, “Klassicheskii predel kvantovaniya Veilya”, TMF, 38:3 (1979), 331–344 | DOI | MR
[6] J. M. Maillard, “On the twisted convolution product and the Weyl transformation of tempered distributions”, J. Geom. Phys., 3:2 (1986), 231–261 | DOI | MR
[7] J. B. Kammerer, “Analysis of the Moyal product in flat space”, J. Math. Phys., 27:2 (1986), 529–535 | DOI | MR
[8] J. M. Gracia-Bondia, J. C. Várilly, “Algebras of distributions suitable for phase-space quantum mechanics. I”, J. Math. Phys., 29:4 (1988), 869–879 | DOI | MR
[9] J. C. Várilly, J. M. Gracia-Bondia, “Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra”, J. Math. Phys., 29:4 (1988), 880–887 | DOI | MR
[10] J. M. Gracia-Bondia, F. Lizzi, G. Marmo, P. Vitale, “Infinitely many star products to play with”, JHEP, 04 (2002), 026, 35 pp. | DOI | MR
[11] V. Gayral, J. M. Gracia-Bondia, B. Iochum, T. Schücker, J. C. Várilly, “Moyal planes are spectral triplets”, Commun. Math. Phys., 246:3 (2004), 569–623 | DOI | MR
[12] M. A. Solovev, “Zvezdochnye proizvedeniya na lineinykh simplekticheskikh prostranstvakh. Skhodimost, predstavleniya, rasshireniya,”, TMF, 181:3 (2014), 568–596 | DOI | DOI | MR
[13] M. A. Soloviev, “Noncommutativity and $\theta$-locality”, J. Phys A: Math. Theor., 40:48 (2007), 14593–14604, arXiv: 0708.1151 | DOI | MR
[14] M. Chaichian, M. Mnatsakanova, A. Tureanu, Yu. Vernov, “Test function space in noncommutative quantum field theory”, JHEP, 09 (2008), 125, 11 pp., arXiv: 0706.1712 | DOI | MR
[15] M. A. Solovev, “Prostranstvenno-podobnaya asimptotika vakuumnykh srednikh v nelokalnoi teorii polya”, TMF, 52:3 (1982), 363–374 | DOI | MR
[16] B. Prangoski, “Pseudodifferential operators of infinite order in spaces of tempered ultradistributions”, J. Pseudo-Differ. Oper. Appl., 4:4 (2013), 495–549 | DOI | MR
[17] N. Teofanov, “Gelfand–Shilov spaces and localization operators”, Funct. Anal. Approx. Comput., 7:2 (2015), 135–158 | MR
[18] M. Cappiello, J. Toft, “Pseudo-differential operators in a Gelfand–Shilov setting”, Math. Nachr., 290:5–6 (2017), 738–755 | DOI | MR
[19] M. A. Soloviev, “Moyal multiplier algebras of the test function spaces of type $S$”, J. Math. Phys., 52:6 (2011), 063502, 18 pp., arXiv: 1012.0669 | DOI | MR
[20] V. P. Palamodov, “Preobrazovaniya Fure bystro rastuschikh beskonechno differentsiruemykh funktsii”, Tr. MMO, 11 (1962), 309–350 | MR | Zbl
[21] M. A. Solovev, “Prostranstva tipa $S$ kak topologicheskie algebry otnositelno skruchennoi svertki i zvezdochnogo proizvedeniya”, Tr. MIAN, 306 (2019), 235–257
[22] A. I. Kashpirovskii, “O sovpadenii prostranstv $S_\alpha^\beta$ i $S_\alpha\cap S^\beta$”, Funkts. analiz i ego pril., 14:2 (1980), 60 | DOI | MR | Zbl
[23] S. Mandelbroit, Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955 | MR | MR | Zbl
[24] J. Chung, S.-Y. Chung, D. Kim, “Characterization of the Gel'fand–Shilov spaces via Fourier transforms”, Proc. Amer. Math. Soc., 124:7 (1996), 2101–2108 | DOI | MR
[25] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4(208) (1979), 97–131 | DOI | MR | Zbl
[26] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxford Graduate Texts in Mathematics, 2, Clarendon, Oxford, 1997 | MR
[27] G. Köthe, Topological Vector Spaces. II, Grundlehren der Mathematischen Wissenschaften, 237, Springer, New York, 1979 | MR
[28] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl
[29] H. Komatsu, “Ultradistributions. I. Structure theorems and a characterization”, J. Fac. Sci. Univ. Tokyo Sec. IA Math., 20:1 (1973), 25–105 | MR | Zbl
[30] M. A. Solovev, “Algebry probnykh funktsii so zvezdochnym proizvedeniem”, TMF, 153:1 (2007), 3–17, arXiv: 0708.0811 | DOI | DOI | MR | Zbl
[31] M. Błaszak, Z. Domański, “Phase space quantum mechanics”, Ann. Phys., 327:2 (2012), 167–211 | DOI | MR
[32] M. A. Solovev, “Obobschennoe sootvetstvie Veilya i algebry moialovskikh multiplikatorov”, TMF, 173:1 (2012), 38–59 | DOI | DOI | MR