Quantum entanglement in the nonrelativistic collision between two
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 291-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of nonstationary scattering theory, we study the formation of an entangled state of two identical nonrelativistic spin-$1/2$ particles as a result of their elastic scattering. The measure of particle entanglement in the final channel is described using pair concurrence. For the indicated quantitative criterion, we obtain general expressions in terms of the direct and exchange scattering amplitudes in the cases of pure and mixed spin states of the pair in the initial channel. We consider the violation of Bell's inequality in the final channel. We show that as a result of a collision between unpolarized particles, a Werner spin state of the pair forms, which is entangled if the singlet component of the angular differential scattering cross section in the center-of-mass reference frame exceeds the triplet component. We use the process of free electron–electron scattering as an example to illustrate the developed formalism.
Mots-clés : quantum entanglement, pair concurrence, identical fermions
Keywords: Bell's inequality, nonrelativistic collision, electron–electron scattering.
@article{TMF_2019_201_2_a9,
     author = {K. A. Kouzakov},
     title = {Quantum entanglement in the~nonrelativistic collision between two},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {291--309},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/}
}
TY  - JOUR
AU  - K. A. Kouzakov
TI  - Quantum entanglement in the nonrelativistic collision between two
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 291
EP  - 309
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/
LA  - ru
ID  - TMF_2019_201_2_a9
ER  - 
%0 Journal Article
%A K. A. Kouzakov
%T Quantum entanglement in the nonrelativistic collision between two
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 291-309
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/
%G ru
%F TMF_2019_201_2_a9
K. A. Kouzakov. Quantum entanglement in the nonrelativistic collision between two. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 291-309. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/

[1] D. Bohm, Y. Aharonov, “Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky”, Phys. Rev., 108:4 (1957), 1070–1076 | DOI | MR

[2] J. Bell, “On the Einstein Podolsky Rosen paradox”, Phys. Phys. Fiz., 1:3 (1964), 195–200 | DOI | MR

[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett., 23:15 (1969), 880–884 | DOI

[4] S. L. Braunstein, P. van Loock, “Quantum information with continuous variables”, Rev. Modern Phys., 77:2 (2005), 513–577, arXiv: quant-ph/0410100 | DOI | MR

[5] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, “Quantum entanglement”, Rev. Modern Phys., 81:2 (2009), 865–942, arXiv: quant-ph/0702225 | DOI | MR

[6] J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to Experiment, Wiley-VCH, Weinheim, 2007 | DOI

[7] J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover, Mineola, New York, 2006

[8] L. Lamata, J. León, “Generation of bipartite spin entanglement via spin-independent scattering”, Phys. Rev. A, 73:5 (2006), 052322, 4 pp., arXiv: quant-ph/0602090 | DOI

[9] R. Feder, F. Giebels, H. Gollisch, “Entanglement creation in electron-electron collisions at solid surfaces”, Phys. Rev. B, 92:7 (2015), 075420, 8 pp. | DOI

[10] D. Vasilyev, F. O. Schumann, F. Giebels, H. Gollisch, J. Kirschner, R. Feder, “Spin-entanglement between two freely propagating electrons: experiment and theory”, Phys. Rev. B, 95:11 (2017), 115134, 7 pp. | DOI

[11] J. Kessler, Polarized Electrons, Springer, Berlin, 1985 | DOI

[12] J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, D. Loss, “Quantum correlations in two-fermion systems”, Phys. Rev. A, 64:2 (2001), 022303, 9 pp., arXiv: quant-ph/0012094 | DOI

[13] G. C. Ghirardi, L. Marinatto, “General criterion for the entanglement of two indistinguishable particles”, Phys. Rev. A, 70:1 (2004), 012109, 10 pp., arXiv: quant-ph/0401065 | DOI

[14] M. C. Tichy, F. Mintert, A. Buchleitner, “Essential entanglement for atomic and molecular physics”, J. Phys. B, 44:19 (2011), 192001, 37 pp., arXiv: 1012.3940 | DOI

[15] M. C. Tichy, F. de Melo, M. Kuś, F. Mintert, A. Buchleitner, “Entanglement of identical particles and the detection process”, Fortschr. Phys., 61:2–3 (2013), 225–237 | DOI | MR

[16] R. L. Franco, G. Compagno, “Quantum entanglement of identical particles by standard information-theoretic notions”, Sci. Rep., 6 (2016), 20603, 10 pp., arXiv: 1511.03445 | DOI

[17] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80:10 (1998), 2245–2248, arXiv: quant-ph/9709029 | DOI

[18] L. Goldfarb, “Uglovaya korrelyatsiya i polyarizatsiya”, Yadernye reaktsii, v. 1, eds. P. Endt, M. Demer, IL, M., 1962, 154–207 | MR

[19] C. J. Joachain, Quantum Collision Theory, North-Holland, Amsterdam, 1975

[20] F. Mintert, A. R. R. Carvalho, M. Kuś, A. Buchleitner, “Measures and dynamics of entangled states”, Phys. Rep., 415:4 (2005), 207–259, arXiv: quant-ph/0505162 | DOI | MR

[21] P. Rungta, V. Buẑek, C. M. Caves, M. Hillery, G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions”, Phys. Rev. A, 64:4 (2001), 042315, 13 pp., arXiv: quant-ph/0102040 | DOI | MR

[22] R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, 40:8 (1989), 4277–4281 | DOI

[23] S. Popescu, “Bell's inequalities versus teleportation: what is nonlocality?”, Phys. Rev. Lett., 72:6 (1994), 797–799 | DOI | MR

[24] T. Hiroshima, S. Ishizaka, “Local and nonlocal properties of Werner states”, Phys. Rev. A, 62:4 (2000), 044302, 3 pp., arXiv: quant-ph/0003058 | DOI | MR

[25] B. S. Cirel'son, “Quantum generalizations of Bell's inequality”, Lett. Math. Phys., 4:2 (1980), 93–100 | DOI | MR

[26] R. H. Dalitz, “On higher Born approximations in potential scattering”, Proc. Roy. Soc. Lond. Ser. A, 206:1087 (1951), 509–520 | DOI | MR

[27] W. F. Ford, “Anomalous behavior of the Coulomb $T$ matrix”, Phys. Rev., 133:6B (1964), B1616–B1621 | DOI | MR

[28] S. Weinberg, “Infrared photons and gravitons”, Phys. Rev., 140:2B (1965), B516–B524 | DOI | MR

[29] K. A. Kouzakov, Yu. V. Popov, V. L. Shablov, “Comment on "Exact three-dimensional wave function and the on-shell $t$ matrix for the sharply cut-off Coulomb potential: failure of the standard renormalization factor"”, Phys. Rev. C, 81:1 (2010), 019801, 2 pp., arXiv: 0908.3137 | DOI

[30] J. D. Dollard, “Asymptotic convergence and the Coulomb interaction”, J. Math. Phys., 5:6 (1964), 729–738 | DOI

[31] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | DOI | MR | MR