Keywords: Bell's inequality, nonrelativistic collision, electron–electron scattering.
@article{TMF_2019_201_2_a9,
author = {K. A. Kouzakov},
title = {Quantum entanglement in the~nonrelativistic collision between two},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {291--309},
year = {2019},
volume = {201},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/}
}
K. A. Kouzakov. Quantum entanglement in the nonrelativistic collision between two. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 291-309. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a9/
[1] D. Bohm, Y. Aharonov, “Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky”, Phys. Rev., 108:4 (1957), 1070–1076 | DOI | MR
[2] J. Bell, “On the Einstein Podolsky Rosen paradox”, Phys. Phys. Fiz., 1:3 (1964), 195–200 | DOI | MR
[3] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, “Proposed experiment to test local hidden-variable theories”, Phys. Rev. Lett., 23:15 (1969), 880–884 | DOI
[4] S. L. Braunstein, P. van Loock, “Quantum information with continuous variables”, Rev. Modern Phys., 77:2 (2005), 513–577, arXiv: quant-ph/0410100 | DOI | MR
[5] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, “Quantum entanglement”, Rev. Modern Phys., 81:2 (2009), 865–942, arXiv: quant-ph/0702225 | DOI | MR
[6] J. Stolze, D. Suter, Quantum Computing: A Short Course from Theory to Experiment, Wiley-VCH, Weinheim, 2007 | DOI
[7] J. R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover, Mineola, New York, 2006
[8] L. Lamata, J. León, “Generation of bipartite spin entanglement via spin-independent scattering”, Phys. Rev. A, 73:5 (2006), 052322, 4 pp., arXiv: quant-ph/0602090 | DOI
[9] R. Feder, F. Giebels, H. Gollisch, “Entanglement creation in electron-electron collisions at solid surfaces”, Phys. Rev. B, 92:7 (2015), 075420, 8 pp. | DOI
[10] D. Vasilyev, F. O. Schumann, F. Giebels, H. Gollisch, J. Kirschner, R. Feder, “Spin-entanglement between two freely propagating electrons: experiment and theory”, Phys. Rev. B, 95:11 (2017), 115134, 7 pp. | DOI
[11] J. Kessler, Polarized Electrons, Springer, Berlin, 1985 | DOI
[12] J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, D. Loss, “Quantum correlations in two-fermion systems”, Phys. Rev. A, 64:2 (2001), 022303, 9 pp., arXiv: quant-ph/0012094 | DOI
[13] G. C. Ghirardi, L. Marinatto, “General criterion for the entanglement of two indistinguishable particles”, Phys. Rev. A, 70:1 (2004), 012109, 10 pp., arXiv: quant-ph/0401065 | DOI
[14] M. C. Tichy, F. Mintert, A. Buchleitner, “Essential entanglement for atomic and molecular physics”, J. Phys. B, 44:19 (2011), 192001, 37 pp., arXiv: 1012.3940 | DOI
[15] M. C. Tichy, F. de Melo, M. Kuś, F. Mintert, A. Buchleitner, “Entanglement of identical particles and the detection process”, Fortschr. Phys., 61:2–3 (2013), 225–237 | DOI | MR
[16] R. L. Franco, G. Compagno, “Quantum entanglement of identical particles by standard information-theoretic notions”, Sci. Rep., 6 (2016), 20603, 10 pp., arXiv: 1511.03445 | DOI
[17] W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits”, Phys. Rev. Lett., 80:10 (1998), 2245–2248, arXiv: quant-ph/9709029 | DOI
[18] L. Goldfarb, “Uglovaya korrelyatsiya i polyarizatsiya”, Yadernye reaktsii, v. 1, eds. P. Endt, M. Demer, IL, M., 1962, 154–207 | MR
[19] C. J. Joachain, Quantum Collision Theory, North-Holland, Amsterdam, 1975
[20] F. Mintert, A. R. R. Carvalho, M. Kuś, A. Buchleitner, “Measures and dynamics of entangled states”, Phys. Rep., 415:4 (2005), 207–259, arXiv: quant-ph/0505162 | DOI | MR
[21] P. Rungta, V. Buẑek, C. M. Caves, M. Hillery, G. J. Milburn, “Universal state inversion and concurrence in arbitrary dimensions”, Phys. Rev. A, 64:4 (2001), 042315, 13 pp., arXiv: quant-ph/0102040 | DOI | MR
[22] R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model”, Phys. Rev. A, 40:8 (1989), 4277–4281 | DOI
[23] S. Popescu, “Bell's inequalities versus teleportation: what is nonlocality?”, Phys. Rev. Lett., 72:6 (1994), 797–799 | DOI | MR
[24] T. Hiroshima, S. Ishizaka, “Local and nonlocal properties of Werner states”, Phys. Rev. A, 62:4 (2000), 044302, 3 pp., arXiv: quant-ph/0003058 | DOI | MR
[25] B. S. Cirel'son, “Quantum generalizations of Bell's inequality”, Lett. Math. Phys., 4:2 (1980), 93–100 | DOI | MR
[26] R. H. Dalitz, “On higher Born approximations in potential scattering”, Proc. Roy. Soc. Lond. Ser. A, 206:1087 (1951), 509–520 | DOI | MR
[27] W. F. Ford, “Anomalous behavior of the Coulomb $T$ matrix”, Phys. Rev., 133:6B (1964), B1616–B1621 | DOI | MR
[28] S. Weinberg, “Infrared photons and gravitons”, Phys. Rev., 140:2B (1965), B516–B524 | DOI | MR
[29] K. A. Kouzakov, Yu. V. Popov, V. L. Shablov, “Comment on "Exact three-dimensional wave function and the on-shell $t$ matrix for the sharply cut-off Coulomb potential: failure of the standard renormalization factor"”, Phys. Rev. C, 81:1 (2010), 019801, 2 pp., arXiv: 0908.3137 | DOI
[30] J. D. Dollard, “Asymptotic convergence and the Coulomb interaction”, J. Math. Phys., 5:6 (1964), 729–738 | DOI
[31] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseniya dlya sistem neskolkikh chastits, Nauka, M., 1985 | DOI | MR | MR