Group analysis of the one-dimensional Boltzmann equation: IV. Complete group classification in the general case
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 232-265
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the one-dimensional Boltzmann equation $f_t+cf_x+(\mathcal{F} f)_c=0$ with a function $\mathcal{F}$ depending on $(t,x,c,f)$ and obtain the complete group classification of such equations in the class of point changes of whole set of variables $(t,x,c,f)$. For this, we impose additional conditions on the transformations for the invariance of (a) the relations $dx=c\,dt$ and $dc=\mathcal{F}\,dt$, (b) the lines $dt=dx=0$, and (c) the form $f\,dx\,dc$, which fix the physical meaning of the used variables and the relations between them.
Keywords: Boltzmann equation, symmetry group, gas dynamics equation.
Mots-clés : equivalence group
@article{TMF_2019_201_2_a6,
     author = {A. V. Borovskikh and K. S. Platonova},
     title = {Group analysis of the~one-dimensional {Boltzmann} equation: {IV.~Complete} group classification in the~general case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {232--265},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a6/}
}
TY  - JOUR
AU  - A. V. Borovskikh
AU  - K. S. Platonova
TI  - Group analysis of the one-dimensional Boltzmann equation: IV. Complete group classification in the general case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 232
EP  - 265
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a6/
LA  - ru
ID  - TMF_2019_201_2_a6
ER  - 
%0 Journal Article
%A A. V. Borovskikh
%A K. S. Platonova
%T Group analysis of the one-dimensional Boltzmann equation: IV. Complete group classification in the general case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 232-265
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a6/
%G ru
%F TMF_2019_201_2_a6
A. V. Borovskikh; K. S. Platonova. Group analysis of the one-dimensional Boltzmann equation: IV. Complete group classification in the general case. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 232-265. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a6/

[1] K. S. Platonova, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. I. Gruppy simmetrii”, Differents. uravneniya, 2017, no. 4, 538–546 | DOI | DOI

[2] K. S. Platonova, “Gruppovoi analiz odnomernogo uravneniya Boltsmana. II. Gruppy ekvivalentnosti i gruppy simmetrii v spetsialnom sluchae”, Differents. uravneniya, 2017, no. 6, 801–813 | DOI | DOI

[3] K. S. Platonova, A. V. Borovskikh, “Gruppovoi analiz odnomernogo uravneniya Boltsmana III. Usloviya sokhraneniya fizicheskogo smysla momentnykh velichin”, TMF, 195:3 (2018), 452–483 | DOI | DOI

[4] J. C. Maxwell, “On the dynamical theory of gases”, The Scientific Papers of James Clerk Maxwell, ed. W. D. Niven, Cambridge Univ. Press, Cambridge, 2011, 26–78 | DOI

[5] I. Müller, T. Ruggeri, Extended Thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer, New York, 1998 | DOI | MR

[6] S. Chepmen, T. Kauling, Matematicheskaya teoriya neodnorodnykh gazov, IL, M., 1960 | MR

[7] V. V. Vedenyapin, Kineticheskie uravneniya Boltsmana i Vlasova, Fizmatlit, M., 2001

[8] K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | DOI | MR | Zbl

[9] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[10] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | MR | MR | Zbl

[11] N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, FL, 1994 | MR

[12] A. Bobylev, V. Dorodnitsyn, “Symmetries of evolution equations with non-local operators and applications to the Boltzmann equation”, Discrete Contin. Dyn. Syst., 24:1 (2009), 35–57 | DOI | MR

[13] Yu. N. Grigoriev, N. H. Ibragimov, V. F. Kovalev, S. V. Meleshko, Symmetries of Integro-Differential Equations. With Applications in Mechanics and Plasma Physics, Lecture Notes in Physics, 806, Springer, Dordrecht, 2010 | DOI | MR

[14] S. Li, Simmetrii differentsialnykh uravnenii, v. 2, Lektsii o nepreryvnykh gruppakh s geometricheskimi i drugimi prilozheniyami, RKhD, M., Izhevsk

[15] A. Gonzalez-Lopez, N. Kamran, P. J. Olver, “Lie algebras of vector fields in the real plane”, Proc. London Math. Soc., 64:2 (1992), 339–368 | DOI | MR

[16] A. V. Borovskikh, K. S. Platonova, “Group analysis of the one-dimensional Boltzmann equation”, arXiv: 1905.08873