Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 222-231
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a new example of a mirror relation between the exact partition functions of $\mathcal{N}{=}(2,2)$ supersymmetric gauged linear sigma models on the sphere $S^2$ and the special Kähler geometry on the moduli spaces of Calabi–Yau manifolds. Using exact calculations, we show this relation indeed holds for Calabi–Yau manifolds of the Berglund–Hubsch type with two moduli.
Keywords: superstring theory, moduli space of Calabi–Yau manifolds, special geometry.
Mots-clés : compactification
@article{TMF_2019_201_2_a5,
     author = {A. A. Belavin and B. A. Eremin},
     title = {Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the~moduli spaces of {Calabi{\textendash}Yau} manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--231},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/}
}
TY  - JOUR
AU  - A. A. Belavin
AU  - B. A. Eremin
TI  - Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 222
EP  - 231
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/
LA  - ru
ID  - TMF_2019_201_2_a5
ER  - 
%0 Journal Article
%A A. A. Belavin
%A B. A. Eremin
%T Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 222-231
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/
%G ru
%F TMF_2019_201_2_a5
A. A. Belavin; B. A. Eremin. Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 222-231. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/

[1] P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, “Vacuum configurations for superstrings”, Nucl. Phys. B, 258:1 (1985), 46–74 | DOI | MR

[2] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, v. 2, Loop Amplitudes, Anomalies and Phenomenology, Cambridge Univ. Press, Cambridge, 1987 | MR

[3] A. Strominger, “Special geometry”, Commun. Math. Phys., 133:1 (1990), 163–180 | DOI | MR

[4] P. Candelas, X. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 335:2 (1991), 455–481 | DOI | MR

[5] P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nucl. Phys. B, 359:1 (1991), 21–74 | DOI | MR

[6] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys.A: Math. Theor., 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR

[7] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170 | DOI | MR

[8] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222, arXiv: hep-th/9301042 | DOI | MR

[9] F. Benini, S. Cremonesi, “Partition functions of $\mathcal{N}=(2,2)$ gauge theories on $S^2$ and vortices”, Commun. Math. Phys, 334:3 (2015), 1483–1527 | DOI | MR

[10] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05 (2013), 093, 69 pp. | DOI | MR

[11] G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants”, Commun. Math. Phys., 333:2 (2015), 717–760, arXiv: 1311.5138 | DOI | MR

[12] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019:3 (2019), 034003, 9 pp. | DOI | MR

[13] K. Aleshkin, A. Belavin, A. Litvinov, “Two-sphere partition functions and Kähler potentials on CY moduli spaces”, Pisma v ZhETF, 108:10 (2018), 725 | DOI | DOI

[14] P. Berglund, P. Candelas, X. De La Ossa, A. Font, T. Hübsch, D. Jančić, F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua”, Nucl. Phys. B, 419:2 (1994), 352–403, arXiv: hep-th/9308005 | DOI | MR

[15] K. Aleshkin, A. Belavin, “Special geometry on the 101 dimesional moduli space of the quintic threefold”, JHEP, 03 (2018), 018, 13 pp. | DOI | MR

[16] K. Aleshkin, A. Belavin, “Exact computation of the Special geometry for Calabi–Yau hypersurfaces of Fermat type”, Pisma v ZhETF, 108:10 (2018), 723–724 | DOI | DOI

[17] K. Aleshkin, A. Belavin, “Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau”, Phys. Lett. B, 776 (2018), 139–144, arXiv: 1708.08362 | DOI | MR

[18] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nucl. Phys. B, 393:1–2 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR

[19] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebr. Geom., 3:3 (1994), 493–545, arXiv: alg-geom/9310003 | MR | Zbl

[20] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror Symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, 2003 | MR