Mots-clés : compactification
@article{TMF_2019_201_2_a5,
author = {A. A. Belavin and B. A. Eremin},
title = {Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the~moduli spaces of {Calabi{\textendash}Yau} manifolds},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {222--231},
year = {2019},
volume = {201},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/}
}
TY - JOUR
AU - A. A. Belavin
AU - B. A. Eremin
TI - Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2019
SP - 222
EP - 231
VL - 201
IS - 2
UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/
LA - ru
ID - TMF_2019_201_2_a5
ER -
%0 Journal Article
%A A. A. Belavin
%A B. A. Eremin
%T Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 222-231
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/
%G ru
%F TMF_2019_201_2_a5
A. A. Belavin; B. A. Eremin. Partition functions of $\mathcal{N}=(2,2)$ supersymmetric sigma models and special geometry on the moduli spaces of Calabi–Yau manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 222-231. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a5/
[1] P. Candelas, G. T. Horowitz, A. Strominger, E. Witten, “Vacuum configurations for superstrings”, Nucl. Phys. B, 258:1 (1985), 46–74 | DOI | MR
[2] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, v. 2, Loop Amplitudes, Anomalies and Phenomenology, Cambridge Univ. Press, Cambridge, 1987 | MR
[3] A. Strominger, “Special geometry”, Commun. Math. Phys., 133:1 (1990), 163–180 | DOI | MR
[4] P. Candelas, X. de la Ossa, “Moduli space of Calabi–Yau manifolds”, Nucl. Phys. B, 335:2 (1991), 455–481 | DOI | MR
[5] P. Candelas, X. C. De La Ossa, P. S. Green, L. Parkes, “A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory”, Nucl. Phys. B, 359:1 (1991), 21–74 | DOI | MR
[6] K. Aleshkin, A. Belavin, “A new approach for computing the geometry of the moduli spaces for a Calabi–Yau manifold”, J. Phys.A: Math. Theor., 51:5 (2018), 055403, 18 pp., arXiv: 1706.05342 | DOI | MR
[7] H. Jockers, V. Kumar, J. M. Lapan, D. R. Morrison, M. Romo, “Two-sphere partition functions and Gromov–Witten invariants”, Commun. Math. Phys., 325:3 (2014), 1139–1170 | DOI | MR
[8] E. Witten, “Phases of $N=2$ theories in two-dimensions”, Nucl. Phys. B, 403:1–2 (1993), 159–222, arXiv: hep-th/9301042 | DOI | MR
[9] F. Benini, S. Cremonesi, “Partition functions of $\mathcal{N}=(2,2)$ gauge theories on $S^2$ and vortices”, Commun. Math. Phys, 334:3 (2015), 1483–1527 | DOI | MR
[10] N. Doroud, J. Gomis, B. Le Floch, S. Lee, “Exact results in $D=2$ supersymmetric gauge theories”, JHEP, 05 (2013), 093, 69 pp. | DOI | MR
[11] G. Bonelli, A. Sciarappa, A. Tanzini, P. Vasko, “Vortex partition functions, wall crossing and equivariant Gromov–Witten invariants”, Commun. Math. Phys., 333:2 (2015), 717–760, arXiv: 1311.5138 | DOI | MR
[12] K. Aleshkin, A. Belavin, A. Litvinov, “JKLMR conjecture and Batyrev construction”, J. Stat. Mech., 2019:3 (2019), 034003, 9 pp. | DOI | MR
[13] K. Aleshkin, A. Belavin, A. Litvinov, “Two-sphere partition functions and Kähler potentials on CY moduli spaces”, Pisma v ZhETF, 108:10 (2018), 725 | DOI | DOI
[14] P. Berglund, P. Candelas, X. De La Ossa, A. Font, T. Hübsch, D. Jančić, F. Quevedo, “Periods for Calabi–Yau and Landau–Ginzburg vacua”, Nucl. Phys. B, 419:2 (1994), 352–403, arXiv: hep-th/9308005 | DOI | MR
[15] K. Aleshkin, A. Belavin, “Special geometry on the 101 dimesional moduli space of the quintic threefold”, JHEP, 03 (2018), 018, 13 pp. | DOI | MR
[16] K. Aleshkin, A. Belavin, “Exact computation of the Special geometry for Calabi–Yau hypersurfaces of Fermat type”, Pisma v ZhETF, 108:10 (2018), 723–724 | DOI | DOI
[17] K. Aleshkin, A. Belavin, “Special geometry on the moduli space for the two-moduli non-Fermat Calabi–Yau”, Phys. Lett. B, 776 (2018), 139–144, arXiv: 1708.08362 | DOI | MR
[18] P. Berglund, T. Hübsch, “A generalized construction of mirror manifolds”, Nucl. Phys. B, 393:1–2 (1993), 377–391, arXiv: hep-th/9201014 | DOI | MR
[19] V. V. Batyrev, “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebr. Geom., 3:3 (1994), 493–545, arXiv: alg-geom/9310003 | MR | Zbl
[20] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, E. Zaslow, Mirror Symmetry, Clay Mathematics Monographs, 1, AMS, Providence, RI, 2003 | MR