Revealing nonperturbative effects in the~SYK model
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 198-221
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the large-$N$ limit, we study saddle points of two SYK chains coupled by an interaction that is nonlocal in Euclidean time. We study the free model with the order of the fermionic interaction $q=2$ analytically and also investigate the model with interaction in the case $q=4$ numerically. We show that in both cases, there is a nontrivial phase structure with an infinite number of phases. Each phase corresponds to a saddle point in the noninteracting two-replica SYK. The nontrivial saddle points have a nonzero value of the replica-nondiagonal correlator in the sense of quasiaveraging if the coupling between replicas is turned off. The nonlocal interaction between replicas thus provides a protocol for turning the nonperturbatively subleading effects in SYK into nonequilibrium configurations that dominate at large $N$. For comparison, we also study two SYK chains with local interaction for $q=2$ and $q=4$. We show that the $q=2$ model has a similar phase structure, while the phase structure differs in the $q=4$ model, dual to the traversable wormhole.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
SYK model, large-$N$ limit, quasiaverage, spontaneous symmetry breaking.
Mots-clés : nonperturbative effect, replica-nondiagonal solution
                    
                  
                
                
                Mots-clés : nonperturbative effect, replica-nondiagonal solution
@article{TMF_2019_201_2_a4,
     author = {I. Ya. Aref'eva and I. V. Volovich and M. A. Khramtsov},
     title = {Revealing nonperturbative effects in {the~SYK} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--221},
     publisher = {mathdoc},
     volume = {201},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/}
}
                      
                      
                    TY - JOUR AU - I. Ya. Aref'eva AU - I. V. Volovich AU - M. A. Khramtsov TI - Revealing nonperturbative effects in the~SYK model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 198 EP - 221 VL - 201 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/ LA - ru ID - TMF_2019_201_2_a4 ER -
I. Ya. Aref'eva; I. V. Volovich; M. A. Khramtsov. Revealing nonperturbative effects in the~SYK model. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 198-221. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/
