Revealing nonperturbative effects in the SYK model
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 198-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the large-$N$ limit, we study saddle points of two SYK chains coupled by an interaction that is nonlocal in Euclidean time. We study the free model with the order of the fermionic interaction $q=2$ analytically and also investigate the model with interaction in the case $q=4$ numerically. We show that in both cases, there is a nontrivial phase structure with an infinite number of phases. Each phase corresponds to a saddle point in the noninteracting two-replica SYK. The nontrivial saddle points have a nonzero value of the replica-nondiagonal correlator in the sense of quasiaveraging if the coupling between replicas is turned off. The nonlocal interaction between replicas thus provides a protocol for turning the nonperturbatively subleading effects in SYK into nonequilibrium configurations that dominate at large $N$. For comparison, we also study two SYK chains with local interaction for $q=2$ and $q=4$. We show that the $q=2$ model has a similar phase structure, while the phase structure differs in the $q=4$ model, dual to the traversable wormhole.
Keywords: SYK model, large-$N$ limit, quasiaverage, spontaneous symmetry breaking.
Mots-clés : nonperturbative effect, replica-nondiagonal solution
@article{TMF_2019_201_2_a4,
     author = {I. Ya. Aref'eva and I. V. Volovich and M. A. Khramtsov},
     title = {Revealing nonperturbative effects in {the~SYK} model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {198--221},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - I. V. Volovich
AU  - M. A. Khramtsov
TI  - Revealing nonperturbative effects in the SYK model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 198
EP  - 221
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/
LA  - ru
ID  - TMF_2019_201_2_a4
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A I. V. Volovich
%A M. A. Khramtsov
%T Revealing nonperturbative effects in the SYK model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 198-221
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/
%G ru
%F TMF_2019_201_2_a4
I. Ya. Aref'eva; I. V. Volovich; M. A. Khramtsov. Revealing nonperturbative effects in the SYK model. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 198-221. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a4/

[1] S. Sachdev, J. Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet”, Phys. Rev. Lett., 70:21 (1993), 3339–3342, arXiv: cond-mat/9212030 | DOI

[2] A. Kitaev, 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/

[3] J. Maldacena, D. Stanford, “Remarks on the Sachdev–Ye–Kitaev model”, Phys. Rev. D, 94:10 (2016), 106002, 43 pp., arXiv: 1604.07818 | DOI | MR

[4] A. Kitaev, S. Suh, “The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual”, JHEP, 05 (2018), 183, arXiv: 1711.08467 | DOI | MR

[5] S. Sachdev, “Bekenstein–Hawking entropy and strange metals”, Phys. Rev. X, 5:4 (2015), 041025, 13 pp., arXiv: 1506.05111 | DOI

[6] A. Jevicki, K. Suzuki, J. Yoon, “Bi-local holography in the SYK model”, JHEP, 07 (2016), 007, 24 pp., arXiv: 1603.06246 | DOI | MR

[7] R. Jackiw, “Lower dimensional gravity”, Nucl. Phys. B, 252 (1985), 343–356 | DOI

[8] C. Teitelboim, “Gravitation and Hamiltonian structure in two space-time dimensions”, Phys. Lett. B, 126:1–2 (1983), 41–45 | DOI | MR

[9] A. Almheiri, J. Polchinski, “Models of AdS${}_2$ backreaction and holography”, JHEP, 11 (2015), 014, 18 pp., arXiv: 1402.6334 | DOI | MR

[10] J. Engelsoy, T. G. Mertens, H. Verlinde, “An investigation of AdS$_{2}$ backreaction and holography”, JHEP, 07 (2016), 139, 29 pp., arXiv: 1606.03438 | DOI | MR

[11] J. Maldacena, D. Stanford, Z. Yang, “Conformal symmetry and its breaking in two-dimensional nearly anti-de Sitter space”, Progr. Theor. Exp. Phys., 2016:12 (2016), 12C104, 26 pp., arXiv: 1606.01857 | DOI | MR

[12] K. Jensen, “Chaos in AdS$_2$ holography”, Phys. Rev. Lett., 117:11 (2016), 111601, 6 pp., arXiv: 1605.06098 | DOI

[13] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, M. Tezuka, “Black holes and random matrices”, JHEP, 05 (2017), 118, 54 pp., arXiv: 1611.04650 | DOI

[14] P. Saad, S. H. Shenker, D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840

[15] P. Saad, S. H. Shenker, D. Stanford, JT gravity as a matrix integral, arXiv: 1903.11115

[16] A. Blommaert, T. G. Mertens, H. Verschelde, Fine structure of Jackiw–Teitelboim quantum gravity, arXiv: 1812.00918

[17] A. Blommaert, T. G. Mertens, H. Verschelde, Clocks and rods in Jackiw–Teitelboim quantum gravity, arXiv: 1902.11194

[18] J. Maldacena, X. L. Qi, Eternal traversable wormhole, arXiv: 1804.00491

[19] A. M. Garcia-Garcia, J. J. M. Verbaarschot, “Spectral and thermodynamic properties of the Sachdev–Ye–Kitaev model”, Phys. Rev. D, 94:12 (2016), 126010, 13 pp., arXiv: 1610.03816 | DOI

[20] A. M. Garcia-Garcia, T. Nosaka, D. Rosa, J. J. M. Verbaarschot, “Quantum chaos transition in a two-site SYK model dual to an eternal traversable wormhole”, Phys. Rev. D, 100:2 (2019), 026002, 21 pp., arXiv: 1901.06031 | DOI

[21] G. Gur-Ari, R. Mahajan, A. Vaezi, “Does the SYK model have a spin glass phase?”, JHEP, 11 (2018), 070, 19 pp., arXiv: 1806.10145 | DOI | MR

[22] P. H. C. Lau, C. T. Ma, J. Murugan, M. Tezuka, “Randomness and chaos”, Phys. Lett. B, 795 (2019), 230–235, arXiv: 1812.04770 | DOI | MR

[23] J. Cotler, N. Hunter-Jones, J. Liu, B. Yoshida, “Chaos, complexity, and random matrices”, JHEP, 11 (2017), 048, 58 pp., arXiv: 1706.05400 | DOI | MR

[24] H. Gharibyan, M. Hanada, S. H. Shenker, M. Tezuka, “Onset of random matrix behavior in scrambling systems”, JHEP, 07 (2018), 124, 62 pp., arXiv: ; Erratum, 02 (2019), 197 1803.08050 | DOI | MR | DOI

[25] K. Okuyama, “Eigenvalue instantons in the spectral form factor of random matrix model”, JHEP, 03 (2019), 147, 13 pp., arXiv: 1812.09469 | DOI | MR

[26] K. Okuyama, Replica symmetry breaking in random matrix model: a toy model of wormhole networks, arXiv: 1903.11776

[27] A. M. Garcia-Garcia, B. Loureiro, A. Romero-Bermúdez, M. Tezuka, “Chaotic-integrable transition in the Sachdev–Ye–Kitaev model”, Phys. Rev. Lett., 120:24 (2018), 241603, 6 pp., arXiv: 1707.02197 | DOI

[28] V. Balasubramanian, B. Craps, B. Czech, G. Sárosi, “Echoes of chaos from string theory black holes”, JHEP, 03 (2017), 154, 23 pp., arXiv: 1612.04334 | DOI | MR

[29] A. Georges, O. Parcollet, S. Sachdev, “Quantum fluctuations of a nearly critical Heisenberg spin glass”, Phys. Rev. B, 63:13 (2001), 134406, 17 pp., arXiv: cond-mat/0009388 | DOI

[30] I. Ya. Arefeva, I. V. Volovich, “O modeli Sachdeva–Ie–Kitaeva v realnom vremeni”, TMF, 197:2 (2018), 296–310, arXiv: 1801.08118 | DOI | DOI

[31] I. Aref'eva, I. Volovich, “Spontaneous symmetry breaking in fermionic random matrix model”, JHEP, 10 (2019), 114, 12 pp., arXiv: 1902.09970 | DOI

[32] W. Fu, S. Sachdev, “Numerical study of fermion and boson models with infinite-range random interactions”, Phys. Rev. B, 94:3 (2016), 035135, 9 pp., arXiv: 1603.05246 | DOI

[33] I. Aref'eva, M. Khramtsov, M. Tikhanovskaya, I. Volovich, “Replica-nondiagonal solutions in the SYK model”, JHEP, 07 (2019), 113, 57 pp., arXiv: 1811.04831 | DOI

[34] H. Wang, D. Bagrets, A. L. Chudnovskiy, A. Kamenev, On the replica structure of Sachdev–Ye–Kitaev model, arXiv: 1812.02666

[35] D. Harlow, D. Jafferis, The factorization problem in Jackiw–Teitelboim gravity, arXiv: 1804.01081

[36] J. Maldacena, D. Stanford, Z. Yang, “Diving into traversable wormholes”, Fortsch. Phys., 65:5 (2017), 201700034, 31 pp., arXiv: 1704.05333 | DOI | MR

[37] D. J. Gross, V. Rosenhaus, “A line of CFTs: from generalized free fields to SYK”, JHEP, 07 (2017), 086, 21 pp., arXiv: 1706.07015 | DOI | MR

[38] J. Kim, I. R. Klebanov, G. Tarnopolsky, W. Zhao, “Symmetry breaking in coupled SYK or tensor models”, Phys. Rev. X, 9:2 (2019), 021043, 20 pp., arXiv: 1902.02287 | DOI

[39] P. Gao, D. L. Jafferis, A. Wall, “Traversable wormholes via a double trace deformation”, JHEP, 12 (2017), 151, 24 pp., arXiv: 1608.05687 | DOI | MR

[40] N. N. Bogolyubov, Sobranie nauchnykh trudov v 12 tomakh, v. 6, Statisticheskaya mekhanika. Ravnovesnaya statisticheskaya mekhanika. 1945–1986, Nauka, M., 2007