Relativistic interacting integrable elliptic tops
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 175-192
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a relativistic generalization of integrable systems describing $M$ interacting elliptic $gl(N)$ Euler–Arnold tops. The obtained models are elliptic integrable systems that reproduce the spin elliptic $GL(M)$ Ruijsenaars–Schneider model with $N=1$ and relativistic integrable $GL(N)$ elliptic tops with $M=1$. We construct the Lax pairs with a spectral parameter on the elliptic curve.
Keywords: elliptic integrable system, spin Ruijsenaars–Schneider model, integrable top.
@article{TMF_2019_201_2_a2,
     author = {A. V. Zotov},
     title = {Relativistic interacting integrable elliptic tops},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {175--192},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/}
}
TY  - JOUR
AU  - A. V. Zotov
TI  - Relativistic interacting integrable elliptic tops
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 175
EP  - 192
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/
LA  - ru
ID  - TMF_2019_201_2_a2
ER  - 
%0 Journal Article
%A A. V. Zotov
%T Relativistic interacting integrable elliptic tops
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 175-192
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/
%G ru
%F TMF_2019_201_2_a2
A. V. Zotov. Relativistic interacting integrable elliptic tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/

[1] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56, arXiv: hep-th/9505039 | DOI | MR | Zbl

[2] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR

[3] E. Billey, J. Avan, O. Babelon, “The $r$-matrix structure of the Euler–Calogero–Moser model”, Phys. Lett. A, 186:1–2 (1994), 114–118, arXiv: ; “Exact Yangian symmetry in the classical Euler–Calogero–Moser model”, 188:3 (1994), 263–271, arXiv: ; I. Krichever, O. Babelon, E. Billey, M. Talon, “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, ed. S. P. Novikov, AMS, Providence, RI, 1995, 83–120, arXiv: hep-th/9312042hep-th/9401117hep-th/9411160 | DOI | DOI | DOI | MR

[4] A. Levin, M. Olshanetsky, A. Zotov, “Hitchin systems – symplectic Hecke correspondence and two-dimensional version”, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR

[5] A. P. Polychronakos, “Calogero–Moser models with noncommutative spin interactions”, Phys. Rev. Lett., 89:12 (2002), 126403, 4 pp., arXiv: ; “Generalized Calogero models through reductions by discrete symmetries”, Nucl. Phys. B, 543:1–2 (1999), 485–498, arXiv: ; “The physics and mathematics of Calogero particles”, J. Phys. A: Math. Gen., 39:41 (2006), 12793–12845, arXiv: hep-th/0112141hep-th/9810211hep-th/0607033 | DOI | DOI | MR | DOI

[6] A. V. Zotov, A. M. Levin, “Integriruemaya sistema vzaimodeistvuyuschikh ellipticheskikh volchkov”, TMF, 146:1 (2006), 55–64 ; А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 ; A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A: Math. Theor., 51:31 (2018), 315202, 26 pp., arXiv: 1801.00245 | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR

[7] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb{C})$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201, 25 pp., arXiv: 1208.5750 | DOI | MR

[8] A. Grekov, I. Sechin, A. Zotov, Generalized model of interacting tops, arXiv: ; И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190, arXiv: 1905.078201905.08724 | DOI

[9] J. Gibbons, T. Hermsen, “A generalization of the Calogero–Moser systems”, Phys. D, 11:3 (1984), 337–348 ; S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR | DOI | MR

[10] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 38 pp., arXiv: ; G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp., arXiv: ; T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: 1405.75231402.31891812.04209 | DOI | DOI | MR | DOI | MR

[11] G. E. Arutyunov, S. A. Frolov, “On Hamiltonian structure of the spin Ruijsenaars–Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203–4216, arXiv: hep-th/9703119 | DOI | MR

[12] N. Reshetikhin, “Degenerately integrable systems”, Zap. nauchn. sem. POMI, 433 (2015), 224–245, arXiv: 1509.00730 | DOI | MR

[13] L. Fehér, Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, arXiv: 1901.03558

[14] O. Chalykh, M. Fairon, On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system, arXiv: 1811.08727

[15] G. Arutyunov, E. Olivucci, Hyperbolic spin Ruijsenaars–Schneider model from Poisson reduction, arXiv: 1906.02619

[16] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl

[17] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, 24 pp., arXiv: 1603.06101 | DOI | MR

[18] A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169, 22 pp., arXiv: 1706.05601 | DOI | MR