@article{TMF_2019_201_2_a2,
author = {A. V. Zotov},
title = {Relativistic interacting integrable elliptic tops},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {175--192},
year = {2019},
volume = {201},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/}
}
A. V. Zotov. Relativistic interacting integrable elliptic tops. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 175-192. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a2/
[1] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56, arXiv: hep-th/9505039 | DOI | MR | Zbl
[2] S. N. M. Ruijsenaars, “Complete integrability of relativistic Calogero–Moser systems and elliptic function identities”, Commun. Math. Phys., 110:2 (1987), 191–213 | DOI | MR
[3] E. Billey, J. Avan, O. Babelon, “The $r$-matrix structure of the Euler–Calogero–Moser model”, Phys. Lett. A, 186:1–2 (1994), 114–118, arXiv: ; “Exact Yangian symmetry in the classical Euler–Calogero–Moser model”, 188:3 (1994), 263–271, arXiv: ; I. Krichever, O. Babelon, E. Billey, M. Talon, “Spin generalization of the Calogero–Moser system and the matrix KP equation”, Topics in Topology and Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 170, ed. S. P. Novikov, AMS, Providence, RI, 1995, 83–120, arXiv: hep-th/9312042hep-th/9401117hep-th/9411160 | DOI | DOI | DOI | MR
[4] A. Levin, M. Olshanetsky, A. Zotov, “Hitchin systems – symplectic Hecke correspondence and two-dimensional version”, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR
[5] A. P. Polychronakos, “Calogero–Moser models with noncommutative spin interactions”, Phys. Rev. Lett., 89:12 (2002), 126403, 4 pp., arXiv: ; “Generalized Calogero models through reductions by discrete symmetries”, Nucl. Phys. B, 543:1–2 (1999), 485–498, arXiv: ; “The physics and mathematics of Calogero particles”, J. Phys. A: Math. Gen., 39:41 (2006), 12793–12845, arXiv: hep-th/0112141hep-th/9810211hep-th/0607033 | DOI | DOI | MR | DOI
[6] A. V. Zotov, A. M. Levin, “Integriruemaya sistema vzaimodeistvuyuschikh ellipticheskikh volchkov”, TMF, 146:1 (2006), 55–64 ; А. В. Зотов, А. В. Смирнов, “Модификации расслоений, эллиптические интегрируемые системы и связанные задачи”, ТМФ, 177:1 (2013), 3–67 ; A. Grekov, A. Zotov, “On $R$-matrix valued Lax pairs for Calogero–Moser models”, J. Phys. A: Math. Theor., 51:31 (2018), 315202, 26 pp., arXiv: 1801.00245 | DOI | DOI | MR | Zbl | DOI | DOI | MR | Zbl | DOI | MR
[7] A. Levin, M. Olshanetsky, A. Smirnov, A. Zotov, “Characteristic classes of $\mathrm{SL}(N,\mathbb{C})$-bundles and quantum dynamical elliptic $R$-matrices”, J. Phys. A: Math. Theor., 46:3 (2013), 035201, 25 pp., arXiv: 1208.5750 | DOI | MR
[8] A. Grekov, I. Sechin, A. Zotov, Generalized model of interacting tops, arXiv: ; И. А. Сечин, А. В. Зотов, “${\rm GL}_{NM}$-значная квантовая динамическая $R$-матрица, построенная по решению ассоциативного уравнения Янга–Бакстера”, УМН, 74:4(448) (2019), 189–190, arXiv: 1905.078201905.08724 | DOI
[9] J. Gibbons, T. Hermsen, “A generalization of the Calogero–Moser systems”, Phys. D, 11:3 (1984), 337–348 ; S. Wojciechowski, “An integrable marriage of the Euler equations with the Calogero–Moser system”, Phys. Lett. A, 111:3 (1985), 101–103 | DOI | MR | DOI | MR
[10] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 38 pp., arXiv: ; G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $r$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp., arXiv: ; T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: 1405.75231402.31891812.04209 | DOI | DOI | MR | DOI | MR
[11] G. E. Arutyunov, S. A. Frolov, “On Hamiltonian structure of the spin Ruijsenaars–Schneider model”, J. Phys. A: Math. Gen., 31:18 (1998), 4203–4216, arXiv: hep-th/9703119 | DOI | MR
[12] N. Reshetikhin, “Degenerately integrable systems”, Zap. nauchn. sem. POMI, 433 (2015), 224–245, arXiv: 1509.00730 | DOI | MR
[13] L. Fehér, Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, arXiv: 1901.03558
[14] O. Chalykh, M. Fairon, On the Hamiltonian formulation of the trigonometric spin Ruijsenaars–Schneider system, arXiv: 1811.08727
[15] G. Arutyunov, E. Olivucci, Hyperbolic spin Ruijsenaars–Schneider model from Poisson reduction, arXiv: 1906.02619
[16] E. K. Sklyanin, “O nekotorykh algebraicheskikh strukturakh, svyazannykh s uravneniem Yanga–Bakstera”, Funkts. analiz i ego pril., 16:4 (1982), 27–34 | DOI | MR | Zbl
[17] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, 24 pp., arXiv: 1603.06101 | DOI | MR
[18] A. Zotov, “Relativistic elliptic matrix tops and finite Fourier transformations”, Modern Phys. Lett. A, 32:32 (2017), 1750169, 22 pp., arXiv: 1706.05601 | DOI | MR