Bethe vectors for orthogonal integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 153-174 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider quantum integrable models associated with the $\mathfrak{so}_3$ algebra and describe Bethe vectors of these models in terms of the current generators of the $\mathcal{D}Y(\mathfrak{so}_3)$ algebra. To implement this program, we use an isomorphism between the $R$-matrix and the Drinfeld current realizations of the Yangians and their doubles for classical type $B$-, $C$-, and $D$-series algebras. Using these results, we derive the actions of the monodromy matrix elements on off-shell Bethe vectors. We obtain recurrence relations for off-shell Bethe vectors and Bethe equations for on-shell Bethe vectors. The formulas for the action of the monodromy matrix elements can also be used to calculate scalar products in the models associated with the $\mathfrak{so}_3$ algebra.
Keywords: Yangian of a simple Lie algebra, Yangian double, algebraic Bethe ansatz.
@article{TMF_2019_201_2_a1,
     author = {A. N. Liashyk and S. Z. Pakuliak and E. Ragoucy and N. A. Slavnov},
     title = {Bethe vectors for orthogonal integrable models},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {153--174},
     year = {2019},
     volume = {201},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a1/}
}
TY  - JOUR
AU  - A. N. Liashyk
AU  - S. Z. Pakuliak
AU  - E. Ragoucy
AU  - N. A. Slavnov
TI  - Bethe vectors for orthogonal integrable models
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 153
EP  - 174
VL  - 201
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a1/
LA  - ru
ID  - TMF_2019_201_2_a1
ER  - 
%0 Journal Article
%A A. N. Liashyk
%A S. Z. Pakuliak
%A E. Ragoucy
%A N. A. Slavnov
%T Bethe vectors for orthogonal integrable models
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 153-174
%V 201
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a1/
%G ru
%F TMF_2019_201_2_a1
A. N. Liashyk; S. Z. Pakuliak; E. Ragoucy; N. A. Slavnov. Bethe vectors for orthogonal integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 2, pp. 153-174. http://geodesic.mathdoc.fr/item/TMF_2019_201_2_a1/

[1] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34:5(209) (1979), 13–63 | DOI | MR

[3] N. Yu. Reshetikhin, “A method of functional equations in the theory of exactly solvable quantum systems”, Lett. Math. Phys., 7:3 (1983), 205–213 | DOI | MR

[4] N. Yu. Reshetikhin, “$\mathrm{O}(N)$ invariant quantum field theoretical models: exact solution”, Nucl. Phys. B, 251 (1985), 565–580 | DOI | MR

[5] P. P. Kulish, N. Yu. Reshetikhin, “Obobschennyi ferromagnetik Geizenberga i model Grossa–Neve”, ZhETF, 80:1 (1981), 214–228 | MR

[6] P. P. Kulish, N. Yu. Reshetikhin, Zap. nauchn. sem. LOMI, 120 (1982), 92–121 | DOI | MR

[7] P. P. Kulish, N. Yu. Reshetikhin, “Diagonalization of $GL(N)$ invariant transfer matrices and quantum $N$-wave system (Lee model)”, J. Phys. A: Math. Gen., 16:16 (1983), L591–L596 | DOI | MR | Zbl

[8] A. N. Varchenko, V. O. Tarasov, “Dzheksonovskie integralnye predstavleniya dlya reshenii kvantovogo uravneniya Knizhnika–Zamolodchikova”, Algebra i analiz, 6:2 (1994), 90–137, arXiv: hep-th/9311040 | MR | Zbl

[9] V. Tarasov, A. Varchenko, “Combinatorial formulae for nested Bethe vector”, SIGMA, 9 (2013), 048, 28 pp., arXiv: math/0702277 | DOI | MR | Zbl

[10] N. Y. Reshetikhin, M. A. Semenov-Tian-Shansky, “Central extensions of quantum current groups”, Lett. Math. Phys., 19:2 (1990), 133–142 | DOI | MR

[11] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Commun. Math. Phys., 361:3 (2018), 827–872 | DOI | MR

[12] N. Jing, M. Liu, F. Yang, Double Yangians of the classical types and their vertex representations, arXiv: 1810.06484

[13] A. A. Gutsalyuk, A. N. Lyashik, S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, “Tokovoe predstavlenie dlya dublya super-yangiana $DY(\mathfrak{gl}(m|n))$ i vektory Bete”, UMN, 72:1(433) (2017), 37–106, arXiv: 1611.09020 | DOI | DOI | MR

[14] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models”, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[15] S. Z. Pakulyak, S. M. Khoroshkin, “Vesovaya funktsiya dlya kvantovoi affinnoi algebry $U_{q}(\widehat{\mathfrak{sl}}_3)$”, TMF, 145:1 (2005), 3–34, arXiv: math/0610433 | DOI | DOI | MR | Zbl

[16] S. Khoroshkin, S. Pakuliak, “A computation of an universal weight function for the quantum affine algebra $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Math. Kyoto Univ., 48:2 (2008), 277–321, arXiv: 0711.2819 | DOI | MR

[17] S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in $SU(3)$-invariant models”, J. Stat. Mech., 9 (2012), P09003, 17 pp., arXiv: 1206.4931 | DOI | MR

[18] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n))$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311, arXiv: 1704.08173 | DOI

[19] A. Molev, Yangian and Classical Lie Algebras, Mathematical Surveys and Monographs, 143, AMS, Providence, RI, 2007 | DOI | MR

[20] D. Arnaudon, A. Molev, E. Ragoucy, “On the $R$-matrix realization of Yangians and their representations”, Ann. Henri Poincaré, 7:7–8 (2006), 1269–1325, arXiv: math.QA/0511481 | DOI | MR

[21] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl

[22] B. Enriquez, S. Khoroshkin, S. Pakuliak, “Weight functions and Drinfeld currents”, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR

[23] A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors”, J. Stat. Mech., 2019:4 (2019), 044001, 24 pp., arXiv: 1810.00364 | DOI

[24] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | Zbl

[25] S. M. Khoroshkin, V. N. Tolstoy, “Yangian double”, Lett. Math. Phys., 36:4 (1996), 373–402 | DOI | MR

[26] E. Mukhin, V. Tarasov, A. Varchenko, “Bethe eigenvectors of higher transfer matrices”, J. Stat. Mech., 2006:8 (2006), P08002, 44 pp., arXiv: math/0605015 | DOI | MR