Mots-clés : phase transition.
@article{TMF_2019_201_1_a8,
author = {M. M. Rahmatullaev and O. N. Khakimov and A. M. Tukhtaboev},
title = {A~$p$-adic generalized {Gibbs} measure for the~ {Ising} model on {a~Cayley} tree},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {126--136},
year = {2019},
volume = {201},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a8/}
}
TY - JOUR AU - M. M. Rahmatullaev AU - O. N. Khakimov AU - A. M. Tukhtaboev TI - A $p$-adic generalized Gibbs measure for the Ising model on a Cayley tree JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 126 EP - 136 VL - 201 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a8/ LA - ru ID - TMF_2019_201_1_a8 ER -
%0 Journal Article %A M. M. Rahmatullaev %A O. N. Khakimov %A A. M. Tukhtaboev %T A $p$-adic generalized Gibbs measure for the Ising model on a Cayley tree %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 126-136 %V 201 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a8/ %G ru %F TMF_2019_201_1_a8
M. M. Rahmatullaev; O. N. Khakimov; A. M. Tukhtaboev. A $p$-adic generalized Gibbs measure for the Ising model on a Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 126-136. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a8/
[1] P. M. Bleher, J. Ruiz, V. A. Zagrebnov, “On the purity of the limiting Gibbs state for the Ising model on the Bethe lattice”, J. Statist. Phys., 79:1–2 (1995), 473–482 | DOI | MR
[2] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl
[3] A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, Dordrecht, 1997 | MR
[4] B. C. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | MR | Zbl
[5] S. Albeverio, W. Karwowski, “A random walk on $p$-adics – the generators and its spectrum”, Stoch. Proc. Appl., 53:1 (1994), 1–22 | DOI | MR
[6] F. Mukhamedov, “On dynamical systems and phase transitions for $q+1$-state $p$-adic Potts model on the Cayley tree”, Math. Phys. Anal. Geom., 16:1 (2013), 49–87 | DOI | MR
[7] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR
[8] N. N. Ganikhodzhaev, F. M. Mukhamedov, U. A. Rozikov, “Fazovye perekhody v modeli Izinga na $\mathbb Z$ nad polem $p$-adicheskikh chisel”, Uzb. matem. zhurn., 1998, no. 4, 23–29 | MR
[9] G. Gandolfo, U. A. Rozikov, J. Ruiz, “On $p$-adic Gibbs measures for hard core model on a Cayley tree”, Markov Process. Related Fields, 18:4 (2012), 701–720 | MR | Zbl
[10] O. N. Khakimov, “On $p$-adic Gibbs measures for Ising model with four competing interactions”, $p$-Adic Numbers Ultrametric Anal. Appl., 5:3 (2013), 194–203 | DOI | MR | Zbl
[11] M. Khamraev, F. M. Mukhamedov, “On $p$-adic $\lambda$-model on the Cayley tree”, J. Math. Phys., 45:11 (2004), 4025–4034 | DOI | MR | Zbl
[12] A. Khrennikov, F. Mukhamedov, J. F. F. Mendes, “On $p$-adic Gibbs measures of countable state Potts model on the Cayley tree”, Nonlinearity, 20:12 (2007), 2923–2937, arXiv: 0705.0244 | DOI | MR | Zbl
[13] A. Khrennikov, F. Mukhamedov, “On uniqueness of Gibbs measure for $p$-adic countable state Potts model on the Cayley tree”, Nonlinear Anal., 71:11 (2009), 5327–5331 | DOI | MR
[14] F. M. Mukhamedov, U. A. Rozikov, “On Gibbs measures of $p$-adic Potts model on the Cayley tree”, Indag. Math., 15:1 (2004), 85–100 | DOI | MR
[15] F. M. Mukhamedov, “On $p$-adic quasi Gibbs measures for $q+1$-state Potts model on the Cayley tree”, $p$-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 241–251 | DOI | MR | Zbl
[16] F. Mukhamedov, “Existence of $p$-adic quasi Gibbs measure for countable state Potts model on the Cayley tree”, J. Inequal. Appl. Geom., 2012 (2012), 104, 12 pp. | DOI | MR
[17] F. Mukhamedov, H. Akin, “Phase transitions for $p$-adic Potts model on the Cayley tree of order three”, J. Stat. Mech., 2013 (2013), P07014, 30 pp. | DOI | MR
[18] F. Mukhamedov, “On strong phase transition for one dimensional countable state $p$-adic Potts model”, J. Stat. Mech., 2014 (2014), P01007, 23 pp. | MR
[19] O. N. Khakimov, “$p$-Adicheskie mery Gibbsa dlya modeli tverdykh sfer s tremya sostoyaniyami na dereve Keli”, TMF, 177:1 (2013), 68–82 | DOI | DOI | MR | Zbl
[20] O. N. Khakimov, “On a generalized $p$-adic Gibbs measure for Ising model on trees”, $p$-Adic Numbers Ultrametric Anal. Appl., 6:3 (2014), 207–217 | DOI | MR
[21] O. N. Khakimov, “$p$-Adicheskie kvazimery Gibbsa dlya modeli Vannimenusa na dereve Keli”, TMF, 179:1 (2014), 13–23 | DOI | DOI | Zbl
[22] F. Mukhamedov, O. Khakimov, “On periodic Gibbs measures of $p$-adic Potts model on a Cayley tree”, $p$-Adic Numbers Ultrametric Anal. Appl., 8:3 (2016), 225–235 | DOI | MR
[23] M. Khamraev, F. Mukhamedov, U. Rozikov, “On the uniqueness of Gibbs measures for $p$-adic nonhomogeneous $\lambda$-model on the Cayley tree”, Lett. Math. Phys., 70:1 (2004), 17–28 | DOI | MR
[24] H. Akin, U. A. Rozikov, S. Temir, “A new set of limiting Gibbs measures for the Ising model on a Cayley tree”, J. Stat. Phys., 142:2 (2011), 314–321 | DOI | MR
[25] M. M. Rahmatullaev, U. A. Rozikov, “Ising model on Cayley trees: a new class of Gibbs measures and their comparison with known ones”, J. Stat. Mech., 2017 (2017), P093205, 15 pp. | DOI | MR
[26] M. Rahmatullaev, “Ising model on trees: $(k_0)$-non translation-invariant Gibbs measures”, J. Phys.: Conf. Ser., 819:1 (2017), 012019, 7 pp. | DOI | MR
[27] N. Koblits, $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Mir, M., 1981 | MR | MR | Zbl | Zbl
[28] W. H. Schikhof, Ultrametric Calculus. An Introduction to $p$-Adic Analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl
[29] K. H. Rosen, Elementary Number Theory and Its Applications, Addison-Westley, Reading, MA, 1986 | MR