Mots-clés : constant of motion
@article{TMF_2019_201_1_a6,
author = {A. J. Adanmitonde and G. Y. H. Avossevou},
title = {Full analytic spectrum of generalized {Jaynes{\textendash}Cummings} {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--117},
year = {2019},
volume = {201},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/}
}
TY - JOUR AU - A. J. Adanmitonde AU - G. Y. H. Avossevou TI - Full analytic spectrum of generalized Jaynes–Cummings Hamiltonians JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 105 EP - 117 VL - 201 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/ LA - ru ID - TMF_2019_201_1_a6 ER -
A. J. Adanmitonde; G. Y. H. Avossevou. Full analytic spectrum of generalized Jaynes–Cummings Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/
[1] I. I. Rabi, “On the process of space quantization”, Phys. Rev., 49:4 (1936), 324–328 ; “Space quantization in a gyrating magnetic field”, 51:8 (1937), 652–654 | DOI | Zbl | DOI | Zbl
[2] E. T. Jaynes, F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51:1 (1963), 89–109 | DOI
[3] P. Carbonaro, G. Compagno, F. Persico, “Canonical dressing of atoms by intense radiation fields”, Phys. Lett. A, 73:2 (1979), 97–99 | DOI
[4] J. H. Eberly, N. B. Narozhny, J. J. Sanchez-Mondragon, “Periodic spontaneous collapse and revival in a simple quantum model”, Phys. Rev. Lett., 44:20 (1980), 1323–1326 | DOI | MR
[5] R. Krivec, V. B. Mandelzweig, “Nonvariational calculation of the sticking probability and fusion rate for the $\mu\,dt$ molecular ion”, Phys. Rev. A, 52:1 (1995), 221–226 | DOI
[6] K. Wódkiewicz, P. L. Knight, S. J. Buckle, S. M. Barnett, “Squeezing and superposition states”, Phys. Rev. A, 35:6 (1987), 2567–2577 | DOI | MR
[7] A. Imamolg̃lu, S. E. Harris, “Lasers without inversion: interference of dressed lifetime-broadened states”, Opt. Lett., 14:24 (1989), 1344–1346 | DOI
[8] E. A. Kochetov, “Exactly solvable non-linear generalisations of the Jaynes–Cummings model”, J. Phys. A: Math. Gen., 20:9 (1987), 2433–2442 | DOI | MR
[9] V. Buzek, “On the non-linear Jaynes–Cummings model: The path-integral approach”, Czech. J. Phys. B, 39:7 (1989), 757–765 | DOI
[10] S. C. Gou, “Characteristic oscillations of phase properties for pair coherent states in the two-mode Jaynes–Cummings-model dynamics”, Phys. Rev. A, 48:4 (1993), 3233–3241 | DOI
[11] E. Choreño, D. Ojeda-Guillén, M. Salazar-Ramírez, V. D. Granados, “Two-mode generalization of the Jaynes–Cummings and Anti-Jaynes–Cummings models”, Ann. Phys., 387 (2017), 121–134 | DOI | MR
[12] M. Chaichian, D. Ellinas, P. Kulish, “Quantum algebra as the dynamical symmetry of the deformed Jaynes–Cummings model”, Phys. Rev. Lett., 65:8 (1990), 980–983 | DOI | MR
[13] A. F. Dossa, G. Y. H. Avossevou, “Full spectrum of the two-photon and the two-mode quantum Rabi models”, J. Math. Phys., 55:10 (2014), 102104, 18 pp. | DOI | MR | Zbl
[14] L. Lamata, J. Casanova, R. Gerritsma, C. F. Roos, J. J. García-Ripoll, E. Solano, “Relativistic quantum mechanics with trapped ions”, New J. Phys., 13:9 (2011), 095003, 19 pp. | DOI
[15] A. Retzker, E. Solano, B. Reznik, “Tavis–Cummings model and collective multiqubit entanglement in trapped ions”, Phys. Rev. A, 75:2 (2007), 022312 | DOI
[16] W. Kopylov, M. Radonjić, T. Brandes, A. Balaz̆, A. Pelster, “Dissipative two-mode Tavis–Cummings model with time-delayed feedback control”, Phys. Rev. A, 92:6 (2015), 063832 | DOI
[17] B. Buck, C. V. Sukumar, “Exactly soluble model of atom-phonon coupling showing periodic decay and revival”, Phys. Lett. A, 81:2–3 (1981), 132–135 | DOI
[18] C. C. Gerry, “Two-photon Jaynes–Cummings model interacting with the squeezed vacuum”, Phys. Rev. A, 37:7 (1988), 2683–2686 | DOI
[19] A. Joshi, R. R. Puri, “Dynamical evolution of the two-photon Jaynes–Cummings model in a Kerr-like medium”, Phys. Rev. A, 45:7 (1992), 5056–5060 | DOI
[20] V. Bartzis, N. Nayak, “Two-photon Jaynes–Cummings model”, J. Opt. Soc. Amer. B, 8:8 (1991), 1779–1786 | DOI
[21] P. Zhou, J. S. Peng, “Dipole squeezing in the two-photon Jaynes–Cummings model with superposition state preparation”, Phys. Rev. A, 44:5 (1991), 3331–3335 | DOI
[22] T. Nasreen, M. S. K. Razmi, “Atomic emission and cavity field spectra for a two-photon Jaynes–Cummings model in the presence of the Stark shift”, J. Opt. Soc. Amer. B, 10:7 (1993), 1292–1300 | DOI
[23] K. M. Ng, C. F. Lo, K. L. Liu, “Exact eigenstates of the two-photon Jaynes–Cummings model with the counter-rotating term”, Eur. Phys. J. D, 6:1 (1999), 119–126 | DOI | MR
[24] C. V. Sukumar, B. Buck, “Multi-phonon generalisation of the Jaynes–Cummings model”, Phys. Lett. A., 83:5 (1981), 211–213 | DOI
[25] H. R. Baghshahi, M. K. Tavassoly, A. Behjat, “Entropy squeezing and atomic inversion in the $k$-photon Jaynes–Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach”, Chinese Phys. B, 23:7 (2014), 074203 | DOI
[26] R. Koc, H. Tütünculer, M. Koca, E. Olgar, “Algebraic treatments of the problems of the spin-1/2 particles in the one- and two-dimensional geometry: A systematic study”, Ann. Phys., 319:2 (2005), 333–347 | DOI | MR
[27] H. Panahi, S. A. Rad, “Two and $k$-photon Jaynes–Cummings models and Dirac oscillator problem in Bargmann–Segal representation”, Int. J. Theor. Phys., 52:11 (2013), 4068–4073 | DOI | MR
[28] F. Cooper, A. Khare, U. Sukhateme, “Supersymmetry and quantum mechanics”, Phys. Rep., 251:5–6 (1995), 267–385 | DOI | MR
[29] R. Dutt, A. Khare, U. Sukhatme, “Supersymmetry, shape invariance, and exactly solvable potentials”, Amer. J. Phys., 56:2 (1988), 163–168 | DOI
[30] Yu. A. Golfand, E. P. Likhtman, “Rasshirenie algebry generatorov gruppy Puankare i narushenie $P$-invariantnosti”, Pisma v ZhETF, 13:8 (1971), 452–455
[31] D. V. Volkov, V. P. Akulov, “O vozmozhnom universalnom vzaimodeistvii neitrino”, Pisma v ZhETF, 16:11 (1972), 621–624
[32] P. Ramond, “Dual theory for free fermions”, Phys. Rev. D, 3:10 (1971), 2415–2418 | DOI | MR
[33] A. Neveu, J. Schwarz, “Factorizable dual model of pions”, Nucl. Phys. B, 31:1 (1971), 86–12 | DOI
[34] J. Wess, B. Zumino, “Supergauge transformations in four dimensions”, Nucl. Phys. B, 70:1 (1974), 39–50 | DOI | MR
[35] H.-Y. Fan, L.-S. Li, “Supersymmetric unitary operator for some generalized Jaynes–Cummings models”, Commun. Theor. Phys., 25:1 (1996), 105–110 | DOI | MR
[36] Zh. V. Ungvu, F. A. Dosa, G. I. Avosvu, “Biortogonalnaya kvantovaya mekhanika dlya neermitovykh mnogomodovoi i mnogofotonnoi modelei Dzheinsa–Kammingsa”, TMF, 193:1 (2017), 66–83 | DOI
[37] H.-X. Lu, X.-Q. Wang, “Multiphoton Jaynes–Cummings model solved via supersymmetric unitary transformation”, Chinese Phys., 9:8 (2000), 1009–1963
[38] E. Choreño, D. Ojeda-Guillén, V. D. Granados, “Matrix diagonalization and exact solution of $k$-photon Jaynes–Cummings model”, Eur. Phys. J. D, 72:8 (2018), 142, 7 pp., arXiv: 1803.03206 | DOI
[39] G. Petiau, “Sur la détermination des fonctions d'ondes du corpuscule de spin $\hbar$ en interaction avec un champ magnitique ou electrique constant”, J. Phys. Radium, 17:11 (1956), 956–964 | DOI | MR
[40] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[41] A. Maggitti, M. Radonjić, B. M. Jelenković, “Dark-polariton bound pairs in the modified Jaynes–Cummings–Hubbard model”, Phys. Rev. A, 93:1 (2016), 013835, 10 pp. | DOI
[42] Ts. Gantsog, A. Joshi, R. Tanas, “Phase properties of one- and two-photon Jaynes–Cummings models with a Kerr medium”, Quantum Semiclass. Opt., 8:3 (1996), 445–456 | DOI
[43] B. M. Rodríguez-Lara, H. M. Moya-Cessa, “The exact solution of generalized Dicke models via Susskind–Glogower operators”, J. Phys. A: Math. Theor., 46:9 (2013), 095301, 10 pp., arXiv: 1207.6551 | DOI | MR