Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 105-117

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop an analytic formalism using basic quantum mechanics techniques to successfully solve the multiphoton Jaynes–Cummings and the generalized Dicke Hamiltonians. For this, we split the Hamiltonians of these models into two operators that have the properties of constants of motion for these systems. We then use some well-known operator properties to obtain complete analytic spectra for the considered models.
Keywords: quantum mechanics, Jaynes–Cummings Hamiltonian, commuting operator, confluent hypergeometric function.
Mots-clés : constant of motion
@article{TMF_2019_201_1_a6,
     author = {A. J. Adanmitonde and G. Y. H. Avossevou},
     title = {Full analytic spectrum of generalized {Jaynes--Cummings} {Hamiltonians}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/}
}
TY  - JOUR
AU  - A. J. Adanmitonde
AU  - G. Y. H. Avossevou
TI  - Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 105
EP  - 117
VL  - 201
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/
LA  - ru
ID  - TMF_2019_201_1_a6
ER  - 
%0 Journal Article
%A A. J. Adanmitonde
%A G. Y. H. Avossevou
%T Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 105-117
%V 201
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/
%G ru
%F TMF_2019_201_1_a6
A. J. Adanmitonde; G. Y. H. Avossevou. Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/