Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 105-117
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop an analytic formalism using basic quantum mechanics techniques to successfully solve the multiphoton Jaynes–Cummings and the generalized Dicke Hamiltonians. For this, we split the Hamiltonians of these models into two operators that have the properties of constants of motion for these systems. We then use some well-known operator properties to obtain complete analytic spectra for the considered models.
Keywords:
quantum mechanics, Jaynes–Cummings Hamiltonian, commuting operator, confluent hypergeometric function.
Mots-clés : constant of motion
Mots-clés : constant of motion
@article{TMF_2019_201_1_a6,
author = {A. J. Adanmitonde and G. Y. H. Avossevou},
title = {Full analytic spectrum of generalized {Jaynes--Cummings} {Hamiltonians}},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {105--117},
publisher = {mathdoc},
volume = {201},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/}
}
TY - JOUR AU - A. J. Adanmitonde AU - G. Y. H. Avossevou TI - Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 105 EP - 117 VL - 201 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/ LA - ru ID - TMF_2019_201_1_a6 ER -
A. J. Adanmitonde; G. Y. H. Avossevou. Full analytic spectrum of generalized Jaynes--Cummings Hamiltonians. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 105-117. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a6/