Approximate formula for the total cross section for a moderately small eikonal function
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 84-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the eikonal approximation of the total cross section for the scattering of two unpolarized particles and obtain an approximate formula in the case where the eikonal function $\chi(b)$ is moderately small, $|\chi(b)|\lesssim0.1$. We show that the total cross section is given by a series of improper integrals of the Born amplitude $A_{\mathrm{B}}$. The advantage of this representation compared with standard eikonal formulas is that these integrals contain no rapidly oscillating Bessel functions. We prove two theorems that allow relating the large-$b$ asymptotic behavior of $\chi(b)$ to analytic properties of the Born amplitude and give several examples of applying these theorems. To check the effectiveness of the main formula, we use it to calculate the total cross section numerically for a selection of specific expressions for $A_{\mathrm{B}}$, choosing only Born amplitudes that result in moderately small eikonal functions and lead to the correct asymptotic behavior of $\chi(b)$. The numerical calculations show that if only the first three nonzero terms in it are taken into account, this formula approximates the total cross section with a relative error of $\mathcal{O}(10^{-5})$.
Keywords: eikonal approximation, total cross section, Bessel function, Hankel transform.
@article{TMF_2019_201_1_a5,
     author = {A. V. Kisselev},
     title = {Approximate formula for the~total cross section for a~moderately small eikonal function},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {84--104},
     year = {2019},
     volume = {201},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a5/}
}
TY  - JOUR
AU  - A. V. Kisselev
TI  - Approximate formula for the total cross section for a moderately small eikonal function
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 84
EP  - 104
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a5/
LA  - ru
ID  - TMF_2019_201_1_a5
ER  - 
%0 Journal Article
%A A. V. Kisselev
%T Approximate formula for the total cross section for a moderately small eikonal function
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 84-104
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a5/
%G ru
%F TMF_2019_201_1_a5
A. V. Kisselev. Approximate formula for the total cross section for a moderately small eikonal function. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 84-104. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a5/

[1] G. Molière, “Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld”, Z. Naturforsch. A, 2:3 (1947), 133–145 ; “Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Vielfachstreuung”, 3:2 (1948), 78–97 | DOI | DOI

[2] R. J. Glauber, “High-energy collision theory”, Lectures in Theoretical Physics (University of Colorado, Boulder, 1958), v. 1, eds. W. E. Brittin, L. G. Dunham, Interscience, New York, 1959, 315–414 | MR

[3] H. Cheng, T. T. Wu, “High-energy elastic scattering in quantum electrodynamics”, Phys. Rev. Lett., 22:13 (1969), 666–669 | DOI

[4] A. A. Logunov, A. N. Tavkhelidze, “Quasi-optical approach in quantum field theory”, Nuovo Cimento, 29:2 (1963), 380–389 | DOI | MR

[5] P. Kollinz, Vvedenie v redzhevskuyu teoriyu i fiziku vysokikh energii, Atomizdat, M., 1980 | MR

[6] S. K. Lucas, “Evaluating infinite integrals involving products of Bessel functions of arbitrary order”, J. Comput. Appl. Math., 64:3 (1995), 269–282 | DOI | MR

[7] J. Van Deun, R. Cools, “Integrating products of Bessel functions with an additional exponential or rational factor”, Comp. Phys. Commun., 178:8 (2008), 578–590 | DOI

[8] A. V. Kiselev, “Priblizhennye formuly dlya umerenno malykh eikonalnykh amplitud”, TMF, 188:2 (2016), 273–287 | DOI | DOI | MR

[9] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR | Zbl

[10] M. Abramovich, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[11] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, v. 2, Transtsendentnye funktsii, ONTI, M.–L., 1963 | MR | MR | Zbl

[12] F. G. Mehler, “Über die Vertheilung der statischen Elektricität in einem von zwei Kugelkalotten begrenzten Körper”, J. für die Reine und Angewandte Math., 1868:68 (1868), 134–150 ; “Notiz über die Dirichlet'schen Integralausdrücke für die Kugelfunktion $P^n(\cos \theta)$ und über eine analoge Integralform für die Zylinderfunktion $J(x)$”, Math. Ann., 5:1 (1872), 141–144 | DOI | MR | DOI | MR

[13] G. Sege, Ortogonalnye mnogochleny, Fizmatlit, M., 1962 | MR | Zbl

[14] A. V. Kisselev, Ramanujan's Master Theorem and two formulas for zero-order Hankel transform, arXiv: 1801.06390

[15] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR | MR | Zbl

[16] C. L. Frenzen, R. Wong, “A note on asymptotic evaluation of some Hankel transforms”, Math. Comp., 45:172 (1985), 537–548 | DOI | MR

[17] G. N. Vatson, Teoriya besselevykh funktsii, IL, M., 1949 | MR | Zbl

[18] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 2, Spetsialnye funktsii, Nauka, M., 1983 | MR | MR | Zbl

[19] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | Zbl

[20] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 3, Ellipticheskie i avtomorfnye funktsii, funktsii Lame i Mate, Nauka, M., 1967 | MR | Zbl