Blowup solutions of the~nonlinear Thomas equation
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 54-64
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study boundary value problems on an interval and on the half-line for the well-known Thomas equation $u_{xt}+\alpha u_x+\beta u_t+u_xu_t=0$, which is a model equation describing processes in chemical kinetics with ion exchange during sorption in a reagent stream. For this equation, we obtain sufficient conditions for its solution blowup in a finite time.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Sobolev-type nonlinear equation, blowup, local solvability, nonlinear capacity, blowup time estimate.
                    
                  
                
                
                @article{TMF_2019_201_1_a3,
     author = {M. O. Korpusov},
     title = {Blowup solutions of the~nonlinear {Thomas} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/}
}
                      
                      
                    M. O. Korpusov. Blowup solutions of the~nonlinear Thomas equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/
