Blowup solutions of the~nonlinear Thomas equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 54-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We study boundary value problems on an interval and on the half-line for the well-known Thomas equation $u_{xt}+\alpha u_x+\beta u_t+u_xu_t=0$, which is a model equation describing processes in chemical kinetics with ion exchange during sorption in a reagent stream. For this equation, we obtain sufficient conditions for its solution blowup in a finite time.
Keywords: Sobolev-type nonlinear equation, blowup, local solvability, nonlinear capacity, blowup time estimate.
@article{TMF_2019_201_1_a3,
     author = {M. O. Korpusov},
     title = {Blowup solutions of the~nonlinear {Thomas} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {201},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/}
}
TY  - JOUR
AU  - M. O. Korpusov
TI  - Blowup solutions of the~nonlinear Thomas equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 54
EP  - 64
VL  - 201
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/
LA  - ru
ID  - TMF_2019_201_1_a3
ER  - 
%0 Journal Article
%A M. O. Korpusov
%T Blowup solutions of the~nonlinear Thomas equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 54-64
%V 201
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/
%G ru
%F TMF_2019_201_1_a3
M. O. Korpusov. Blowup solutions of the~nonlinear Thomas equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 54-64. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a3/