Some exact solutions of the Volterra lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 37-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study solutions of the Volterra lattice satisfying the stationary equation for its nonautonomous symmetry. We show that the dynamics in $t$ and $n$ are governed by the respective continuous and discrete Painlevé equations and describe the class of initial data leading to regular solutions. For the lattice on the half-axis, we express these solutions in terms of the confluent hypergeometric function. We compute the Hankel transform of the coefficients of the corresponding Taylor series based on the Wronskian representation of the solution.
Mots-clés : Volterra lattice, Painlevé equation
Keywords: symmetry, confluent hypergeometric function, Hankel transformation, Catalan number.
@article{TMF_2019_201_1_a2,
     author = {V. E. Adler and A. B. Shabat},
     title = {Some exact solutions of {the~Volterra} lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {37--53},
     year = {2019},
     volume = {201},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - A. B. Shabat
TI  - Some exact solutions of the Volterra lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 37
EP  - 53
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/
LA  - ru
ID  - TMF_2019_201_1_a2
ER  - 
%0 Journal Article
%A V. E. Adler
%A A. B. Shabat
%T Some exact solutions of the Volterra lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 37-53
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/
%G ru
%F TMF_2019_201_1_a2
V. E. Adler; A. B. Shabat. Some exact solutions of the Volterra lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 37-53. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/

[1] A. R. Its, A. V. Kitaev, A. S. Fokas, “Izomonodromnyi podkhod v teorii dvumernoi kvantovoi gravitatsii.”, UMN, 45:6 (1990), 135–136 | DOI | MR | Zbl

[2] A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Painlevé equations and their appearance in quantum gravity”, Commun. Math. Phys., 142:2 (1991), 313–344 | DOI | MR

[3] V. E. Adler, A. B. Shabat, “Tsepochka Volterra i chisla Katalana”, Pisma v ZhETF, 108:12 (2018), 834–837 | DOI | DOI

[4] A. N. Leznov, “O polnoi integriruemosti odnoi nelineinoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh v dvumernom prostranstve”, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl

[5] M. Aigner, “Catalan-like numbers and determinants”, J. Combin. Theory Ser. A, 87:1 (1999), 33–51 | DOI | MR

[6] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR

[7] J. W. Layman, “The Hankel transform and some of its properties”, J. Integer Sequences, 4 (2001), Article 01.1.5, 11 pp. | MR

[8] I. Yu. Cherdantsev, R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type”, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR

[9] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[10] B. Grammaticos, A. Ramani, “From continuous Painlevé IV to the asymmetric discrete Painlevé I”, J. Phys. A, 31:27 (1998), 5787–5798 | DOI | MR

[11] B. Grammaticos, A. Ramani, “Discrete Painlevé equations: an integrability paradigm”, Phys. Scr., 89:3 (2014), 038002 | DOI

[12] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[13] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR