Keywords: symmetry, confluent hypergeometric function, Hankel transformation, Catalan number.
@article{TMF_2019_201_1_a2,
author = {V. E. Adler and A. B. Shabat},
title = {Some exact solutions of {the~Volterra} lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {37--53},
year = {2019},
volume = {201},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/}
}
V. E. Adler; A. B. Shabat. Some exact solutions of the Volterra lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 37-53. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a2/
[1] A. R. Its, A. V. Kitaev, A. S. Fokas, “Izomonodromnyi podkhod v teorii dvumernoi kvantovoi gravitatsii.”, UMN, 45:6 (1990), 135–136 | DOI | MR | Zbl
[2] A. S. Fokas, A. R. Its, A. V. Kitaev, “Discrete Painlevé equations and their appearance in quantum gravity”, Commun. Math. Phys., 142:2 (1991), 313–344 | DOI | MR
[3] V. E. Adler, A. B. Shabat, “Tsepochka Volterra i chisla Katalana”, Pisma v ZhETF, 108:12 (2018), 834–837 | DOI | DOI
[4] A. N. Leznov, “O polnoi integriruemosti odnoi nelineinoi sistemy differentsialnykh uravnenii v chastnykh proizvodnykh v dvumernom prostranstve”, TMF, 42:3 (1980), 343–349 | DOI | MR | Zbl
[5] M. Aigner, “Catalan-like numbers and determinants”, J. Combin. Theory Ser. A, 87:1 (1999), 33–51 | DOI | MR
[6] R. P. Stanley, Enumerative Combinatorics, v. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge Univ. Press, Cambridge, 1999 | DOI | MR
[7] J. W. Layman, “The Hankel transform and some of its properties”, J. Integer Sequences, 4 (2001), Article 01.1.5, 11 pp. | MR
[8] I. Yu. Cherdantsev, R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type”, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR
[9] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl
[10] B. Grammaticos, A. Ramani, “From continuous Painlevé IV to the asymmetric discrete Painlevé I”, J. Phys. A, 31:27 (1998), 5787–5798 | DOI | MR
[11] B. Grammaticos, A. Ramani, “Discrete Painlevé equations: an integrability paradigm”, Phys. Scr., 89:3 (2014), 038002 | DOI
[12] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl
[13] R. Ehrenborg, “The Hankel determinant of exponential polynomials”, Amer. Math. Monthly, 107:6 (2000), 557–560 | DOI | MR