Solution space monodromy of a special double confluent Heun equation and its applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 17-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider three linear operators determining automorphisms of the solution space of a special double confluent Heun equation of positive integer order ($\mathcal{L}$-operators). We propose a new method for describing properties of the solution space of this equation based on using eigenfunctions of one of the $\mathcal{L}$-operators, called the universal $\mathcal{L}$-operator. We construct composition laws for $\mathcal{L}$-operators and establish their relation to the monodromy transformation of the solution space of the special double confluent Heun equation. We find four functionals quadratic in eigenfunctions of the universal automorphism; they have a property with respect to the considered equation analogous to the property of the first integral. Based on them, we construct matrix representations of the $\mathcal{L}$-operators and also the monodromy operator. We give a method for extending solutions of the special double confluent Heun equation from the subset $\operatorname{Re} z>0$ of a complex plane to a maximum domain on which the solution exists. As an example of its application to the RSJ model theory of overdamped Josephson junctions, we give the explicit form of the transformation of the phase difference function induced by the monodromy of the solution space of the special double confluent Heun equation and propose a way to continue this function from a half-period interval to any given interval in the domain of the function using only algebraic transformations.
Mots-clés : double confluent Heun equation, solution space automorphism, monodromy, solution continuation
Keywords: composition law, matrix representation, RSJ model of Josephson junction.
@article{TMF_2019_201_1_a1,
     author = {S. I. Tertychnyi},
     title = {Solution space monodromy of a~special double confluent {Heun} equation and its applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {17--36},
     year = {2019},
     volume = {201},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a1/}
}
TY  - JOUR
AU  - S. I. Tertychnyi
TI  - Solution space monodromy of a special double confluent Heun equation and its applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 17
EP  - 36
VL  - 201
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a1/
LA  - ru
ID  - TMF_2019_201_1_a1
ER  - 
%0 Journal Article
%A S. I. Tertychnyi
%T Solution space monodromy of a special double confluent Heun equation and its applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 17-36
%V 201
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a1/
%G ru
%F TMF_2019_201_1_a1
S. I. Tertychnyi. Solution space monodromy of a special double confluent Heun equation and its applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 201 (2019) no. 1, pp. 17-36. http://geodesic.mathdoc.fr/item/TMF_2019_201_1_a1/

[1] R. Foote, “Geometry of the Prytz planimeter”, Rep. Math. Phys., 42:1–2 (1998), 249–271, arXiv: math/9808070 | DOI | MR

[2] M. Levi, S. Tabachnikov, “On bicycle tire tracks geometry, hatchet planimeter, Menzin's conjecture and oscillation of unicycle tracks”, Experiment. Math., 18:2 (2009), 173–186 | DOI | MR

[3] R. L. Foote, M. Levi, S. Tabachnikov, “Tractrices, bicycle tire tracks, hatchet planimeters, and a 100-year-old conjecture”, Amer. Math. Monthly, 120:3 (2013), 199–216 | DOI | MR

[4] G. Bor, M. Levi, R. Perline, S. Tabachnikov, Tire tracks and integrable curve evolution, arXiv: 1705.06314

[5] J. Guckenheimer, Yu. S. Ilyashenko, “The duck and the devil: canards on the staircase”, Mosc. Math. J., 1:1 (2001), 27–47 | DOI | MR | Zbl

[6] V. A. Kleptsyn, O. L. Romaskevich, I. V. Schurov, “Effekt Dzhozefsona i bystro-medlennye sistemy”, Nanostruktury. Matematicheskaya fizika i modelirovanie, 8:1 (2013), 31–46

[7] W. C. Stewart, “Current-voltage characteristics of Josephson junctions”, Appl. Phys. Lett., 12:8 (1968), 277–280 | DOI

[8] D. E. McCumber, “Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions”, J. Appl. Phys., 39:7 (1968), 3113–3118 | DOI

[9] P. Mangin, R. Kahn, Superconductivity. An introduction, Springer, New York, 2017 | DOI

[10] V. M. Bukhshtaber, O. V. Karpov, S. I. Tertychnyi, “Effekt kvantovaniya chisla vrascheniya”, TMF, 162:2 (2010), 254–265 | DOI | DOI | MR | Zbl

[11] Yu. S. Ilyashenko, D. A. Ryzhov, D. A. Filimonov, “Zakhvat fazy dlya uravnenii, opisyvayuschikh rezistivnuyu model dzhozefsonovskogo perekhoda, i ikh vozmuschenii”, Funkts. analiz i ego pril., 45:3 (2011), 41–54 | DOI | DOI | MR | Zbl

[12] A. Glutsyuk, L. Rybnikov, “On families of differential equations on two-torus with all phase-lock areas”, Nonlinearity, 30:1 (2017), 61–72 | DOI | MR

[13] G. V. Osipov, A. V. Polovinkin, Sinkhronizatsiya vneshnim periodicheskim vozdeistviem, Izd-vo NNGU, Nizhnii Novgorod, 2005

[14] V. M. Buchstaber, A. A. Glutsyuk, “Josephson effect, Arnold tongues and double confluent Heun equations”, Talk at International Conference “Contemporary Mathematics”, devoted to 80 anniversary of V. I. Arnold (Higher School of Economics, Skolkovo Institute of Science and Technology, Steklov Mathematical Institute, Moscow, December 18–23, 2017)

[15] S. I. Tertychniy, Long-term behavior of solutions to the equation $\dot \phi+\sin\phi=f$ with periodic $f$ and the modeling of dynamics of overdamped Josephson junctions: Unlectured notes, arXiv: math-ph/0512058

[16] V. M. Bukhshtaber, S. I. Tertychnyi, “Dinamicheskie sistemy na tore s tozhdestvennym otobrazheniem Puankare, assotsiirovannye s effektom Dzhozefsona”, UMN, 69:2 (2014), 201–202 | DOI | DOI | MR | Zbl

[17] S. I. Tertychniy, The interrelation of the special double confluent Heun equation and the equation of RSJ model of Josephson junction revisited, arXiv: 1811.03971

[18] D. Schmidt, G. Wolf, “Double confluent Heun equation”, Heun's Diffrential Equations, ed. A. Ronveaux, Oxford Univ. Press, Oxford, 1995, 129–188 | MR

[19] S. Slavyanov, V. Lai, Spetsialnye funktsii. Edinaya teoriya, osnovannaya na analize singulyarnostei, Nevskii dialekt, SPb., 2002 | MR | Zbl

[20] The Heun Project. Heun functions, their generalizations and applications, \par } {\tt http://theheunproject.org/bibliography.html

[21] M. Hortaçsu, “Heun functions and some of their applications in physics”, Adv. High Energy Phys., 2018 (2018), 8621573, 14 pp., arXiv: 1101.0471 | DOI

[22] V. M. Buchstaber, A. A. Glutsyuk, “On phase-lock areas in a model of Josephson effect and double confluent Heun equations”, Talk at International Conference “Real and Complex Dynamical Systems”, dedicated to the to the 75th anniversary of Yu. S. Il'yashenko (Moscow, Steklov Mathematical Institute, November 30, 2018)

[23] V. M. Bukhshtaber, S. I. Tertychnyi, “Semeistvo yavnykh reshenii uravneniya rezistivnoi modeli perekhoda Dzhozefsona”, TMF, 176:2 (2013), 163–188 | DOI | DOI | MR | Zbl

[24] A. A. Glutsyuk, “On constrictions of phase-lock areas in model of overdamped Josephson effect and transition matrix of the double-confluent Heun equation”, J. Dyn. Control. Syst., 25:3 (2019), 323–349 | DOI | MR

[25] V. M. Bukhshtaber, S. I. Tertychnyi, “Golomorfnye resheniya dvazhdy konflyuentnogo uravneniya Goina, assotsiirovannogo s RSJ-modelyu perekhoda Dzhozefsona”, TMF, 182:3 (2015), 373–404 | DOI | DOI | MR

[26] V. M. Buchstaber, A. A. Glutsyuk, “On determinants of modified Bessel functions and entire solutions of double confluent Heun equations”, Nonlinearity, 29:12 (2016), 3857–3870, arXiv: 1509.01725 | DOI | MR

[27] Y. Bibilo, Josephson effect and isomonodromic deformations, arXiv: 1805.11759

[28] A. A. Glutsyuk, V. A. Kleptsyn, D. A. Filimonov, I. V. Schurov, “O kvantovanii peremychek v uravnenii, modeliruyuschem effekt Dzhozefsona”, Funkts. analiz i ego pril., 48:4 (2014), 47–64 | DOI | DOI | MR | Zbl

[29] V. M. Bukhshtaber, A. A. Glutsyuk, “Sobstvennye funktsii monodromii uravnenii Goina i granitsy zon fazovogo zakhvata v modeli silnoshuntirovannogo effekta Dzhozefsona”, Tr. MIAN, 297 (2017), 62–104 | DOI | DOI | MR

[30] A. A. Salatich, S. Yu. Slavyanov, “Antiquantization of the double confluent Heun equation. The Teukolsky equation”, Russ. J. Nonlinear Dyn., 15:1 (2019), 79–85 | DOI | MR

[31] S. Yu. Slavyanov, “Izomonodromnye deformatsii uravnenii klassa Goina i uravneniya Penleve”, TMF, 123:3 (2000), 395–406 | DOI | DOI | MR | Zbl

[32] S. Yu. Slavyanov, O. L. Stesik, “Antikvantovanie deformirovannykh uravnenii klassa Goina”, TMF, 186:1 (2016), 142–151 | DOI | DOI | MR

[33] S. I. Tertychniy, Square root of the monodromy map for the equation of RSJ model of Josephson junction, arXiv: 1901.01103

[34] V. M. Bukhshtaber, S. I. Tertychnyi, “Avtomorfizmy prostranstva reshenii spetsialnykh dvazhdy konflyuentnykh uravnenii Goina”, Funkts. analiz i ego pril., 50:3 (2016), 12–33 | DOI | DOI | MR | Zbl

[35] V. M. Bukhshtaber, S. I. Tertychnyi, “Predstavleniya gruppy Kleina, zadavaemye chetverkami polinomov, assotsiirovannykh s dvazhdy konflyuentnym uravneniem Goina”, Matem. zametki, 103:3 (2018), 346–363 | DOI | DOI