Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 494-506
Voir la notice de l'article provenant de la source Math-Net.Ru
We discuss the conditions under which a special linear transformation of the classical Chebyshev polynomials $($of the second kind$)$ generate a class of polynomials related to "local perturbations" of the coefficients of a discrete Schrödinger equation. These polynomials are called generalized Chebyshev polynomials. We answer this question for the simplest class of "local perturbations" and describe a generalized Chebyshev oscillator corresponding to generalized Chebyshev polynomials.
Mots-clés :
Jacobi matrix, orthogonal polynomials
Keywords: classical Chebyshev polynomial, generalized Chebyshev polynomial, generalized Chebyshev oscillator.
Keywords: classical Chebyshev polynomial, generalized Chebyshev polynomial, generalized Chebyshev oscillator.
@article{TMF_2019_200_3_a7,
author = {V. V. Borzov and E. V. Damaskinsky},
title = {Local perturbation of the~discrete {Schr\"odinger} operator and a~generalized {Chebyshev} oscillator},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {494--506},
publisher = {mathdoc},
volume = {200},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/}
}
TY - JOUR AU - V. V. Borzov AU - E. V. Damaskinsky TI - Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 494 EP - 506 VL - 200 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/ LA - ru ID - TMF_2019_200_3_a7 ER -
%0 Journal Article %A V. V. Borzov %A E. V. Damaskinsky %T Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 494-506 %V 200 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/ %G ru %F TMF_2019_200_3_a7
V. V. Borzov; E. V. Damaskinsky. Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 494-506. http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/