Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 494-506

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the conditions under which a special linear transformation of the classical Chebyshev polynomials $($of the second kind$)$ generate a class of polynomials related to "local perturbations" of the coefficients of a discrete Schrödinger equation. These polynomials are called generalized Chebyshev polynomials. We answer this question for the simplest class of "local perturbations" and describe a generalized Chebyshev oscillator corresponding to generalized Chebyshev polynomials.
Mots-clés : Jacobi matrix, orthogonal polynomials
Keywords: classical Chebyshev polynomial, generalized Chebyshev polynomial, generalized Chebyshev oscillator.
@article{TMF_2019_200_3_a7,
     author = {V. V. Borzov and E. V. Damaskinsky},
     title = {Local perturbation of the~discrete {Schr\"odinger} operator and a~generalized {Chebyshev} oscillator},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {494--506},
     publisher = {mathdoc},
     volume = {200},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/}
}
TY  - JOUR
AU  - V. V. Borzov
AU  - E. V. Damaskinsky
TI  - Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 494
EP  - 506
VL  - 200
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/
LA  - ru
ID  - TMF_2019_200_3_a7
ER  - 
%0 Journal Article
%A V. V. Borzov
%A E. V. Damaskinsky
%T Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 494-506
%V 200
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/
%G ru
%F TMF_2019_200_3_a7
V. V. Borzov; E. V. Damaskinsky. Local perturbation of the~discrete Schr\"odinger operator and a~generalized Chebyshev oscillator. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 494-506. http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a7/