Statistical nature of Skyrme–Faddeev models in 2+1 dimensions and normalizable fermions
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 381-398
Cet article a éte moissonné depuis la source Math-Net.Ru
The Skyrme–Faddeev model has planar soliton solutions with the target space $\mathcal{P}^N$. An Abelian Chern–Simons term (the Hopf term) in the Lagrangian of the model plays a crucial role for the statistical properties of the solutions. Because $\Pi_3(\mathcal{P}^1)=\mathbb{Z}$, the term becomes an integer for $N=1$. On the other hand, for $N>1$, it becomes perturbative because $\Pi_3(\mathcal{P}^N)$ is trivial. The prefactor $\Theta$ of the Hopf term is not quantized, and its value depends on the physical system. We study the spectral flow of normalizable fermions coupled with the baby-Skyrme model $(\mathcal{P}^N$ Skyrme–Faddeev model$)$. We discuss whether the statistical nature of solitons can be explained using their constituents, i.e., quarks.
Keywords:
topological soliton, spin statistics, spectral flow.
Mots-clés : skyrmion
Mots-clés : skyrmion
@article{TMF_2019_200_3_a0,
author = {Yu. Amari and M. Iida and N. Sawado},
title = {Statistical nature of {Skyrme{\textendash}Faddeev} models in 2+1 dimensions and normalizable fermions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {381--398},
year = {2019},
volume = {200},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a0/}
}
TY - JOUR AU - Yu. Amari AU - M. Iida AU - N. Sawado TI - Statistical nature of Skyrme–Faddeev models in 2+1 dimensions and normalizable fermions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 381 EP - 398 VL - 200 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a0/ LA - ru ID - TMF_2019_200_3_a0 ER -
Yu. Amari; M. Iida; N. Sawado. Statistical nature of Skyrme–Faddeev models in 2+1 dimensions and normalizable fermions. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 3, pp. 381-398. http://geodesic.mathdoc.fr/item/TMF_2019_200_3_a0/