Quasirenormalizable quantum field theories
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 290-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Leading logarithms in massless nonrenormalizable effective field theories can be computed using nonlinear recurrence relations. These recurrence relations follow from the fundamental requirements of unitarity, analyticity, and crossing symmetry of scattering amplitudes and generalize the renormalization group technique to the case of nonrenormalizable effective field theories. We review the existing exact solutions of nonlinear recurrence relations relevant for field theory applications. We introduce a new class of quantum field theories (quasirenormalizable field theories) in which resumming leading logarithms for $2\to2$ scattering amplitudes yields a possibly infinite number of Landau poles.
Keywords: renormalization group, effective field theory, leading logarithm, Dixon elliptic function.
Mots-clés : Landau pole
@article{TMF_2019_200_2_a9,
     author = {M. V. Polyakov and K. M. Semenov-Tian-Shansky and A. O. Smirnov and A. A. Vladimirov},
     title = {Quasirenormalizable quantum field theories},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {290--309},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/}
}
TY  - JOUR
AU  - M. V. Polyakov
AU  - K. M. Semenov-Tian-Shansky
AU  - A. O. Smirnov
AU  - A. A. Vladimirov
TI  - Quasirenormalizable quantum field theories
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 290
EP  - 309
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/
LA  - ru
ID  - TMF_2019_200_2_a9
ER  - 
%0 Journal Article
%A M. V. Polyakov
%A K. M. Semenov-Tian-Shansky
%A A. O. Smirnov
%A A. A. Vladimirov
%T Quasirenormalizable quantum field theories
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 290-309
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/
%G ru
%F TMF_2019_200_2_a9
M. V. Polyakov; K. M. Semenov-Tian-Shansky; A. O. Smirnov; A. A. Vladimirov. Quasirenormalizable quantum field theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 290-309. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/

[1] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | DOI | MR | Zbl

[2] G. Colangelo, “Double chiral logs in the $\pi \pi$ scattering amplitude”, Phys. Lett. B, 350:1 (1995), 85–91, arXiv: hep-ph/9502285 | DOI

[3] D. I. Kazakov, “Ob odnom obobschenii uravnenii renormgruppy dlya kvantovo-polevykh teorii proizvolnogo vida”, TMF, 75:1, 157–160 | DOI | MR

[4] M. Buchler, G. Colangelo, “Renormalization group equations for effective field theories”, Eur. Phys. J. C, 32:3 (2003), 427–442, arXiv: hep-ph/0309049 | DOI | MR

[5] M. Bissegger, A. Fuhrer, “Chiral logarithms to five loops”, Phys. Lett. B, 646:2–3 (2007), 72–79, arXiv: hep-ph/0612096 | DOI

[6] N. Kivel, M. V. Polyakov, A. Vladimirov, “Chiral logarithms in the massless limit tamed”, Phys. Rev. Lett., 101:26 (2008), 262001, 4 pp., arXiv: 0809.3236 | DOI

[7] J. Koschinski, M. V. Polyakov, A. A. Vladimirov, “Leading infrared logarithms from unitarity, analyticity and crossing”, Phys. Rev. D, 82:1 (2010), 014014, 10 pp., arXiv: 1004.2197 | DOI

[8] N. A. Kivel, M. V. Polyakov, A. A. Vladimirov, “Leading chiral logarithms for pion form factors to arbitrary number of loops”, Pisma v ZhETF, 89:11 (2009), 631–635, arXiv: 0904.3008 | DOI

[9] A. A. Vladimirov, Infrared logarithms in effective field theories, PhD Thesis, Ruhr University, Bochum, 2010,\par http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/VladimirovAlexey/diss.pdf

[10] M. V. Polyakov, A. A. Vladimirov, “Glavnye infrakrasnye logarifmy dlya sigma-modeli s polyami na proizvolnom rimanovom mnogoobrazii”, TMF, 169:1 (2011), 158–166, arXiv: 1012.4205 | DOI | DOI | MR

[11] B. Ananthanarayan, S. Ghosh, A. Vladimirov, D. Wyler, “Leading logarithms of the two point function in massless $O(N)$ and $SU(N)$ models to any order from analyticity and unitarity”, Eur. Phys. J. A, 54:7 (2018), 123, 8 pp., arXiv: 1803.07013 | DOI

[12] I. A. Perevalova, M. V. Polyakov, A. N. Vall, A. A. Vladimirov, Chiral inflation of the pion radius, arXiv: 1105.4990

[13] J. Bijnens, L. Carloni, “Leading logarithms in the massive $O(N)$ nonlinear sigma model”, Nucl. Phys. B, 827:1–2 (2010), 237–255, arXiv: 0909.5086 | DOI | MR

[14] J. Bijnens, L. Carloni, “The massive $O(N)$ non-linear sigma model at high orders”, Nucl. Phys. B, 843:1 (2011), 55–83, arXiv: 1008.3499 | DOI

[15] J. Bijnens, A. A. Vladimirov, “Leading logarithms for the nucleon mass”, Nucl. Phys. B, 891 (2015), 700–719, arXiv: 1409.6127 | DOI | MR

[16] J. Linzen, M. V. Polyakov, K. M. Semenov-Tian-Shansky, N. S. Sokolova, “Exact summation of leading infrared logarithms in 2D effective field theories”, JHEP, 04 (2019), 007, 22 pp., arXiv: 1811.12289 | DOI

[17] L. D. Landau, A. A. Abrikosov, I. M. Khalatnikov, “Ob ustranenii beskonechnostei v kvantovoi elektrodinamike”, Dokl. AN SSSR, 95:4 (1954), 497–500 | MR | Zbl

[18] D. Malyshev, “Leading RG logs in $\phi^4$ theory”, Phys. Lett. B, 578:1–2 (2004), 231–234, arXiv: hep-th/0307301 | DOI

[19] D. V. Malyshev, “Algebra Khopfa grafov i renormgruppovye uravneniya”, TMF, 143:1 (2005), 22–32, arXiv: hep-th/0408230 | DOI | DOI | MR | Zbl

[20] D. Kreimer, “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2 (1998), 303–334, arXiv: q-alg/9707029 | DOI

[21] A. T. Borlakov, D. I. Kazakov, D. M. Tolkachev, D. E. Vlasenko, “Summation of all-loop UV divergences in maximally supersymmetric gauge theories”, JHEP, 12 (2016), 154, 18 pp., arXiv: 1610.05549 | DOI

[22] D. I. Kazakov, D. E. Vlasenko, “Leading and subleading UV divergences in scattering amplitudes for $D=8$ $\mathcal{N}=1$ SYM theory in all loops”, Phys. Rev. D, 95:4 (2017), 045006, 9 pp., arXiv: 1603.05501 | DOI | MR

[23] D. I. Kazakov, A. T. Borlakov, D. M. Tolkachev, D. E. Vlasenko, “Structure of UV divergences in maximally supersymmetric gauge theories”, Phys. Rev. D, 97:12 (2018), 125008, 8 pp., arXiv: 1712.04348 | DOI | MR

[24] J. Koschinski, Leading logarithms in four fermion theories, PhD Thesis, Ruhr University, Bochum, 2015 https://d-nb.info/1109051174/34

[25] A. Hammerstein, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta Math., 54:1 (1930), 117–176 | DOI | MR

[26] C. L. Dolph, “Nonlinear integral equations of the Hammerstein type”, Trans. Amer. Math. Soc., 66 (1949), 289–307 | DOI | MR

[27] N. J. A. Sloane, “Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers”, The On-line Encyclopedia of Integer Sequences (OEIS), 1964, A000108 https://oeis.org/A000108

[28] A. A. Migdal, “Multicolor QCD as dual-resonance theory”, Ann. Phys., 109:2 (1977), 365–392 | DOI | MR

[29] A. A. Migdal, “Series expansion for mesonic masses in multicolor QCD”, Ann. Phys., 110:1 (1978), 46–62 | DOI

[30] A. A. Migdal, Meromorphization of large $N$ QFT, arXiv: 1109.1623

[31] A. A. Migdal, Integral equation for CFT/string duality, arXiv: 1107.2370

[32] J. Erlich, G. D. Kribs, I. Low, “Emerging holography”, Phys. Rev. D, 73:9 (2006), 096001, 11 pp., arXiv: hep-th/0602110 | DOI

[33] R. Bacher, P. Flajolet, “Pseudo-factorials, elliptic functions, and continued fractions”, Ramanujan J., 21:1 (2010), 71–97, arXiv: 0901.1379 | DOI | MR

[34] R. Bacher, “Pseudo-factorials: $a(0)=1$, $a(n+1)=(-1)^{(n+1)}*\sum_{k=0,\ldots, n} \binom{n}{k}*a(k)*a(n-k)$, $n\ge0$”, The On-Line Encyclopedia of Integer Sequences (OEIS), 2004, A098777 https://oeis.org/A098777

[35] E. van Fossen Conrad, P. Flajolet, “The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion”, Sém. Lothar. Combin., 54 (2005), B54g, 44 pp., arXiv: math/0507268 | MR

[36] A. C. Dixon, “On the doubly periodic functions arising out of the curve $x^3+y^3-3axy=1$”, Quart. J. Pure Appl. Math., 24 (1890), 167–233 | Zbl

[37] V. I. Smirnov, Kurs vysshei matematiki, v. 3, ch. 2, Nauka, M., 1974 | MR