Mots-clés : Landau pole
@article{TMF_2019_200_2_a9,
author = {M. V. Polyakov and K. M. Semenov-Tian-Shansky and A. O. Smirnov and A. A. Vladimirov},
title = {Quasirenormalizable quantum field theories},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {290--309},
year = {2019},
volume = {200},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/}
}
TY - JOUR AU - M. V. Polyakov AU - K. M. Semenov-Tian-Shansky AU - A. O. Smirnov AU - A. A. Vladimirov TI - Quasirenormalizable quantum field theories JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 290 EP - 309 VL - 200 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/ LA - ru ID - TMF_2019_200_2_a9 ER -
%0 Journal Article %A M. V. Polyakov %A K. M. Semenov-Tian-Shansky %A A. O. Smirnov %A A. A. Vladimirov %T Quasirenormalizable quantum field theories %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 290-309 %V 200 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/ %G ru %F TMF_2019_200_2_a9
M. V. Polyakov; K. M. Semenov-Tian-Shansky; A. O. Smirnov; A. A. Vladimirov. Quasirenormalizable quantum field theories. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 290-309. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a9/
[1] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | DOI | MR | Zbl
[2] G. Colangelo, “Double chiral logs in the $\pi \pi$ scattering amplitude”, Phys. Lett. B, 350:1 (1995), 85–91, arXiv: hep-ph/9502285 | DOI
[3] D. I. Kazakov, “Ob odnom obobschenii uravnenii renormgruppy dlya kvantovo-polevykh teorii proizvolnogo vida”, TMF, 75:1, 157–160 | DOI | MR
[4] M. Buchler, G. Colangelo, “Renormalization group equations for effective field theories”, Eur. Phys. J. C, 32:3 (2003), 427–442, arXiv: hep-ph/0309049 | DOI | MR
[5] M. Bissegger, A. Fuhrer, “Chiral logarithms to five loops”, Phys. Lett. B, 646:2–3 (2007), 72–79, arXiv: hep-ph/0612096 | DOI
[6] N. Kivel, M. V. Polyakov, A. Vladimirov, “Chiral logarithms in the massless limit tamed”, Phys. Rev. Lett., 101:26 (2008), 262001, 4 pp., arXiv: 0809.3236 | DOI
[7] J. Koschinski, M. V. Polyakov, A. A. Vladimirov, “Leading infrared logarithms from unitarity, analyticity and crossing”, Phys. Rev. D, 82:1 (2010), 014014, 10 pp., arXiv: 1004.2197 | DOI
[8] N. A. Kivel, M. V. Polyakov, A. A. Vladimirov, “Leading chiral logarithms for pion form factors to arbitrary number of loops”, Pisma v ZhETF, 89:11 (2009), 631–635, arXiv: 0904.3008 | DOI
[9] A. A. Vladimirov, Infrared logarithms in effective field theories, PhD Thesis, Ruhr University, Bochum, 2010,\par http://www-brs.ub.ruhr-uni-bochum.de/netahtml/HSS/Diss/VladimirovAlexey/diss.pdf
[10] M. V. Polyakov, A. A. Vladimirov, “Glavnye infrakrasnye logarifmy dlya sigma-modeli s polyami na proizvolnom rimanovom mnogoobrazii”, TMF, 169:1 (2011), 158–166, arXiv: 1012.4205 | DOI | DOI | MR
[11] B. Ananthanarayan, S. Ghosh, A. Vladimirov, D. Wyler, “Leading logarithms of the two point function in massless $O(N)$ and $SU(N)$ models to any order from analyticity and unitarity”, Eur. Phys. J. A, 54:7 (2018), 123, 8 pp., arXiv: 1803.07013 | DOI
[12] I. A. Perevalova, M. V. Polyakov, A. N. Vall, A. A. Vladimirov, Chiral inflation of the pion radius, arXiv: 1105.4990
[13] J. Bijnens, L. Carloni, “Leading logarithms in the massive $O(N)$ nonlinear sigma model”, Nucl. Phys. B, 827:1–2 (2010), 237–255, arXiv: 0909.5086 | DOI | MR
[14] J. Bijnens, L. Carloni, “The massive $O(N)$ non-linear sigma model at high orders”, Nucl. Phys. B, 843:1 (2011), 55–83, arXiv: 1008.3499 | DOI
[15] J. Bijnens, A. A. Vladimirov, “Leading logarithms for the nucleon mass”, Nucl. Phys. B, 891 (2015), 700–719, arXiv: 1409.6127 | DOI | MR
[16] J. Linzen, M. V. Polyakov, K. M. Semenov-Tian-Shansky, N. S. Sokolova, “Exact summation of leading infrared logarithms in 2D effective field theories”, JHEP, 04 (2019), 007, 22 pp., arXiv: 1811.12289 | DOI
[17] L. D. Landau, A. A. Abrikosov, I. M. Khalatnikov, “Ob ustranenii beskonechnostei v kvantovoi elektrodinamike”, Dokl. AN SSSR, 95:4 (1954), 497–500 | MR | Zbl
[18] D. Malyshev, “Leading RG logs in $\phi^4$ theory”, Phys. Lett. B, 578:1–2 (2004), 231–234, arXiv: hep-th/0307301 | DOI
[19] D. V. Malyshev, “Algebra Khopfa grafov i renormgruppovye uravneniya”, TMF, 143:1 (2005), 22–32, arXiv: hep-th/0408230 | DOI | DOI | MR | Zbl
[20] D. Kreimer, “On the Hopf algebra structure of perturbative quantum field theories”, Adv. Theor. Math. Phys., 2 (1998), 303–334, arXiv: q-alg/9707029 | DOI
[21] A. T. Borlakov, D. I. Kazakov, D. M. Tolkachev, D. E. Vlasenko, “Summation of all-loop UV divergences in maximally supersymmetric gauge theories”, JHEP, 12 (2016), 154, 18 pp., arXiv: 1610.05549 | DOI
[22] D. I. Kazakov, D. E. Vlasenko, “Leading and subleading UV divergences in scattering amplitudes for $D=8$ $\mathcal{N}=1$ SYM theory in all loops”, Phys. Rev. D, 95:4 (2017), 045006, 9 pp., arXiv: 1603.05501 | DOI | MR
[23] D. I. Kazakov, A. T. Borlakov, D. M. Tolkachev, D. E. Vlasenko, “Structure of UV divergences in maximally supersymmetric gauge theories”, Phys. Rev. D, 97:12 (2018), 125008, 8 pp., arXiv: 1712.04348 | DOI | MR
[24] J. Koschinski, Leading logarithms in four fermion theories, PhD Thesis, Ruhr University, Bochum, 2015 https://d-nb.info/1109051174/34
[25] A. Hammerstein, “Nichtlineare Integralgleichungen nebst Anwendungen”, Acta Math., 54:1 (1930), 117–176 | DOI | MR
[26] C. L. Dolph, “Nonlinear integral equations of the Hammerstein type”, Trans. Amer. Math. Soc., 66 (1949), 289–307 | DOI | MR
[27] N. J. A. Sloane, “Catalan numbers: C(n) = binomial(2n,n)/(n+1) = (2n)!/(n!(n+1)!). Also called Segner numbers”, The On-line Encyclopedia of Integer Sequences (OEIS), 1964, A000108 https://oeis.org/A000108
[28] A. A. Migdal, “Multicolor QCD as dual-resonance theory”, Ann. Phys., 109:2 (1977), 365–392 | DOI | MR
[29] A. A. Migdal, “Series expansion for mesonic masses in multicolor QCD”, Ann. Phys., 110:1 (1978), 46–62 | DOI
[30] A. A. Migdal, Meromorphization of large $N$ QFT, arXiv: 1109.1623
[31] A. A. Migdal, Integral equation for CFT/string duality, arXiv: 1107.2370
[32] J. Erlich, G. D. Kribs, I. Low, “Emerging holography”, Phys. Rev. D, 73:9 (2006), 096001, 11 pp., arXiv: hep-th/0602110 | DOI
[33] R. Bacher, P. Flajolet, “Pseudo-factorials, elliptic functions, and continued fractions”, Ramanujan J., 21:1 (2010), 71–97, arXiv: 0901.1379 | DOI | MR
[34] R. Bacher, “Pseudo-factorials: $a(0)=1$, $a(n+1)=(-1)^{(n+1)}*\sum_{k=0,\ldots, n} \binom{n}{k}*a(k)*a(n-k)$, $n\ge0$”, The On-Line Encyclopedia of Integer Sequences (OEIS), 2004, A098777 https://oeis.org/A098777
[35] E. van Fossen Conrad, P. Flajolet, “The Fermat cubic, elliptic functions, continued fractions, and a combinatorial excursion”, Sém. Lothar. Combin., 54 (2005), B54g, 44 pp., arXiv: math/0507268 | MR
[36] A. C. Dixon, “On the doubly periodic functions arising out of the curve $x^3+y^3-3axy=1$”, Quart. J. Pure Appl. Math., 24 (1890), 167–233 | Zbl
[37] V. I. Smirnov, Kurs vysshei matematiki, v. 3, ch. 2, Nauka, M., 1974 | MR