Mots-clés : orthogonal polynomial
@article{TMF_2019_200_2_a6,
author = {V. D. Lyakhovsky},
title = {Chebyshev polynomials and the~proper decomposition of functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {259--268},
year = {2019},
volume = {200},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/}
}
V. D. Lyakhovsky. Chebyshev polynomials and the proper decomposition of functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 259-268. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/
[1] B. N. Ryland, “Multivariate Chebyshev approximation”, Talk at Manifolds and Geometric Integration Colloquia (MaGIC-2008) (Renon, Bolzano, Italy, February 18–21, 2008)
[2] V. V. Borzov, E. V. Damaskinsky, “The algebra of two dimensional generalized Chebyshev–Koornwinder oscillator”, J. Math. Phys., 55:10 (2014), 103505, 23 pp. | DOI | MR
[3] G. von Gehlen, S. S. Roan, “The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series. Series II: Mathematics, Physics and Chemistry, 35, eds. S. Pakuliak, G. von Gehlen, Springer, Dordrecht, 2001, 155–172, arXiv: hep-th/0104144 | MR
[4] G. Leng, “Compression of aircraft aerodynamic database using multivariable Chebyshev polynomials”, Adv. Eng. Software, 28:2 (1997), 133–141 | DOI
[5] A. F. Cheng, S. E. Hawking, L. Nguyen, C. A. Monoco, G. G. Seagrave, Data compression using Chebyshev transform, US Patent No. US 7{,}249{,}153 B2, 2007,\par http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080009460.pdf
[6] V. D. Lyakhovsky, Ph. V. Uvarov, “Multivariate Chebyshev polynomials”, J. Phys. A: Math. Theor., 46:12 (2013), 125201, 22 pp. | DOI | MR | Zbl
[7] V. D. Lyakhovskii, “Chislennye postroeniya s privlecheniem polinomov Chebysheva”, TMF, 190:2 (2017), 354–365 | DOI | DOI | MR