Chebyshev polynomials and the proper decomposition of functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 259-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the equivalence property of scalar products, based on which we can find the rows of the Chebyshev polynomial sets. For each function in the space $\mathcal L^2_{\mathfrak g}$, the approximation by a row of Chebyshev polynomials is characterized by the standard deviation. In the case of simple algebras, the sets of standard Chebyshev polynomials ensure rapid convergence of the rows. The presented calculation algorithm produces correct results for the algebras $B_3$, $C_3$, and $D_3$.
Keywords: root system, Chebyshev multivariate polynomial, discrete Fourier series, function decomposition.
Mots-clés : orthogonal polynomial
@article{TMF_2019_200_2_a6,
     author = {V. D. Lyakhovsky},
     title = {Chebyshev polynomials and the~proper decomposition of functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {259--268},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/}
}
TY  - JOUR
AU  - V. D. Lyakhovsky
TI  - Chebyshev polynomials and the proper decomposition of functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 259
EP  - 268
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/
LA  - ru
ID  - TMF_2019_200_2_a6
ER  - 
%0 Journal Article
%A V. D. Lyakhovsky
%T Chebyshev polynomials and the proper decomposition of functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 259-268
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/
%G ru
%F TMF_2019_200_2_a6
V. D. Lyakhovsky. Chebyshev polynomials and the proper decomposition of functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 259-268. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a6/

[1] B. N. Ryland, “Multivariate Chebyshev approximation”, Talk at Manifolds and Geometric Integration Colloquia (MaGIC-2008) (Renon, Bolzano, Italy, February 18–21, 2008)

[2] V. V. Borzov, E. V. Damaskinsky, “The algebra of two dimensional generalized Chebyshev–Koornwinder oscillator”, J. Math. Phys., 55:10 (2014), 103505, 23 pp. | DOI | MR

[3] G. von Gehlen, S. S. Roan, “The superintegrable chiral Potts quantum chain and generalized Chebyshev polynomials”, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory, NATO Science Series. Series II: Mathematics, Physics and Chemistry, 35, eds. S. Pakuliak, G. von Gehlen, Springer, Dordrecht, 2001, 155–172, arXiv: hep-th/0104144 | MR

[4] G. Leng, “Compression of aircraft aerodynamic database using multivariable Chebyshev polynomials”, Adv. Eng. Software, 28:2 (1997), 133–141 | DOI

[5] A. F. Cheng, S. E. Hawking, L. Nguyen, C. A. Monoco, G. G. Seagrave, Data compression using Chebyshev transform, US Patent No. US 7{,}249{,}153 B2, 2007,\par http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20080009460.pdf

[6] V. D. Lyakhovsky, Ph. V. Uvarov, “Multivariate Chebyshev polynomials”, J. Phys. A: Math. Theor., 46:12 (2013), 125201, 22 pp. | DOI | MR | Zbl

[7] V. D. Lyakhovskii, “Chislennye postroeniya s privlecheniem polinomov Chebysheva”, TMF, 190:2 (2017), 354–365 | DOI | DOI | MR