Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 250-258 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the field theory renormalization group technique in the framework of the so-called double-expansion scheme, which takes additional divergences that appear in two dimensions into account, we calculate the turbulent Prandtl number in two spatial dimensions in the two-loop approximation in the model of a passive scalar field advected by the turbulent environment driven by the stochastic Navier–Stokes equation. We show that in contrast to the three-dimensional case, where the two-loop correction to the one-loop value of the turbulent Prandtl number is very small (less than $2\%$ of the one-loop value), the two-loop value of the turbulent Prandtl number in two spatial dimensions, $\mathrm{Pr_t}=0.27472$, is considerably smaller than the corresponding value $\mathrm{Pr_t}^{(1)}=0.64039$ obtained in the one-loop approximation, i.e., the two-loop correction to the turbulent Prandtl number in the two-dimensional case represents about $57\%$ of its one-loop value and must be seriously taken into account. This result also means that there is a significant difference $($at least quantitatively$)$ between diffusion processes in two- and three-dimensional turbulent environments.
Keywords: developed turbulence, renormalization group.
Mots-clés : passive advection
@article{TMF_2019_200_2_a5,
     author = {E. Jur\v{c}i\v{s}inov\'a and M. Jur\v{c}i\v{s}in and R. Remecky},
     title = {Turbulent {Prandtl} number in two spatial dimensions: {Two-loop} renormalization group analysis},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {250--258},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a5/}
}
TY  - JOUR
AU  - E. Jurčišinová
AU  - M. Jurčišin
AU  - R. Remecky
TI  - Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 250
EP  - 258
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a5/
LA  - ru
ID  - TMF_2019_200_2_a5
ER  - 
%0 Journal Article
%A E. Jurčišinová
%A M. Jurčišin
%A R. Remecky
%T Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 250-258
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a5/
%G ru
%F TMF_2019_200_2_a5
E. Jurčišinová; M. Jurčišin; R. Remecky. Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 250-258. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a5/

[1] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, v. 2, Nauka, M., 1965 | MR

[2] L. P. Chua, R. A. Antonia, “Turbulent Prandtl number in a circular jet”, Internat. J. Heat Mass Transfer, 33:2 (1990), 331–339 ; K.-A. Chang, E. A. Cowen, “Turbulent Prandtl number in neutrally buoyant turbulent round jet”, J. Eng. Mech., 128:10 (2002), 1082–1087 | DOI | DOI

[3] A. Yoshizawa, S.-I. Itoh, K. Itoh, Plasma and Fluid Turbulence: Theory and Modelling, IOP, Bristol, Philadelphia, 2003

[4] D. Biskamp, Magnetohydrodynamic Turbulence, Cambridge Univ. Press, Cambridge, 2003 | DOI

[5] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, Metod renormalizatsionnoi gruppy v teorii razvitoi turbulentnosti, Izd-vo S.-Peterb. un-ta, SPb., 1998 | MR

[6] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, PIYaF RAN, SPb., 1999 | DOI | MR

[7] L. Ts. Adzhemyan, J. Honkonen, T. L. Kim, L. Sladkoff, “Two-loop calculation of the turbulent Prandtl number”, Phys. Rev. E, 71:5 (2005), 056311, 9 pp. | DOI | MR

[8] E. Jurčišinová, M. Jurčišin, R. Remecký, “Comment on ‘Two-loop calculation of the turbulent Prandtl number’”, Phys. Rev. E, 82:2 (2010), 028301, 3 pp. | MR

[9] E. Jurčišinová, M. Jurčišin, R. Remecký, “Erratum: Influence of helicity on the Kolmogorov regime in fully developed turbulence []”, Phys. Rev. E, 86:4 (2011), 049902, 1 pp. Phys. Rev. E 79, 046319 (2009) | DOI | MR

[10] E. Jurčišinová, M. Jurčišin, R. Remecký, “Turbulent Prandtl number in a model of passively advected vector field: two-loop renormalization group result”, Phys. Rev. E, 88:1 (2013), 011002, 4 pp. | DOI

[11] E. Jurčišinová, M. Jurčišin, R. Remecký, “Turbulent Prandtl number in the $A$ model of passive vector admixture”, Phys. Rev. E, 93:3 (2016), 033106, 22 pp. | DOI

[12] M. Hnatich, J. Honkonen, D. Horvath, R. Semancik, “Advection of a passive scalar near two dimensions”, Phys. Rev. E, 59:4 (1999), 4112–4121 | DOI

[13] M. Hnatich, J. Honkonen, M. Jurcisin, “Stochastic magnetohydrodynamic turbulence in space dimensions $d\gtrsim 2$”, Phys. Rev. E, 64:5 (2001), 056411, 11 pp. | DOI

[14] M. Jurcisin, M. Stehlik, “$D$-dimensional developed MHD turbulence: double expansion model”, J. Phys. A: Math. Gen., 39:25 (2006), 8035–8050 | DOI | MR

[15] A. V. Gladyshev, E. Jurčišinová, M. Jurčišin, R. Remecký, P. Zalom, “Anomalous scaling of a passive scalar field near two dimensions”, Phys. Rev. E, 86:3 (2012), 036302, 12 pp. | DOI

[16] J. Honkonen, M. Yu. Nalimov, “Two-parameter expansion in the renormalization-group analysis of turbulence”, Z. Phys. B: Cond. Matter, 99:2 (1996), 297–303 | DOI

[17] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, Fazis, M., 1998 | MR

[18] L. Biferale, M. Cencini, A. S. Lanotte, D. Vergni, “Inverse velocity statistics in two-dimensional turbulence”, Phys. Fluids, 15:4 (2003), 1012–1020 | DOI | MR

[19] A. Mazzino, P. Muratore-Ginanneschi, S. Musacchio, “Scaling regimes of 2d turbulence with power-law stirring: theories versus numerical experiments”, J. Stat. Mech., 2009:10 (2009), P10012, 19 pp., arXiv: 0907.3396 | DOI