Influence of finite-time velocity correlations on scaling properties of the magnetic field in the Kazantsev–Kraichnan model: Two-loop renormalization group analysis
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 234-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the field theory renormalization group method and the operator product expansion technique in the two-loop approximation, we investigate the influence of the finite-time correlations of a turbulent velocity field on the anomalous scaling behavior of the single-time two-point correlation functions of the passive magnetic field in the framework of the generalized kinematic Kazantsev–Kraichnan model with the presence of large-scale anisotropy in the three-dimensional case. We briefly discuss the scaling regimes of the model and find two-loop expressions for the anomalous dimensions of the leading composite operators in the operator product expansion as explicit functions of the parameter determining the finite-time correlations of the velocity field in the studied model. We show that the anomalous dimensions of the composite operators near the isotropic shell play a central role in the scaling properties of the model and this allows uniquely determining the two-loop expressions for the scaling exponents of all single-time two-point correlation functions of the magnetic field that drive their scaling properties deep inside the inertial interval. We show that the presence of the finite-time correlations of the velocity field leads to a significantly more pronounced anomalous scaling of the magnetic correlation functions compared with the standard Kazantsev–Kraichnan rapid-change model with the $\delta$-time correlated Gaussian velocity field.
Keywords: Kazanstev–Kraichnan model, renormalization group, anomalous scaling.
Mots-clés : turbulence
@article{TMF_2019_200_2_a4,
     author = {E. Jur\v{c}i\v{s}inov\'a and M. Jur\v{c}i\v{s}in and M. Menkyna},
     title = {Influence of finite-time velocity correlations on scaling properties of the~magnetic field in {the~Kazantsev{\textendash}Kraichnan} model: {Two-loop} renormalization group analysis},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {234--249},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a4/}
}
TY  - JOUR
AU  - E. Jurčišinová
AU  - M. Jurčišin
AU  - M. Menkyna
TI  - Influence of finite-time velocity correlations on scaling properties of the magnetic field in the Kazantsev–Kraichnan model: Two-loop renormalization group analysis
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 234
EP  - 249
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a4/
LA  - ru
ID  - TMF_2019_200_2_a4
ER  - 
%0 Journal Article
%A E. Jurčišinová
%A M. Jurčišin
%A M. Menkyna
%T Influence of finite-time velocity correlations on scaling properties of the magnetic field in the Kazantsev–Kraichnan model: Two-loop renormalization group analysis
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 234-249
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a4/
%G ru
%F TMF_2019_200_2_a4
E. Jurčišinová; M. Jurčišin; M. Menkyna. Influence of finite-time velocity correlations on scaling properties of the magnetic field in the Kazantsev–Kraichnan model: Two-loop renormalization group analysis. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 234-249. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a4/

[1] A. S. Monin, A. M. Yaglom, Statisticheskaya gidromekhanika, v. 2, Nauka, M., 1965 | MR

[2] U. Frish, Turbulentnost. Nasledie A. N. Kolmogorova, Fazis, M., 1998 | MR

[3] G. Falkovich, K. Gawȩdzki, M. Vergassola, “Particles and fields in fluid turbulence”, Rev. Modern Phys., 73:4 (2001), 913–976 | DOI | MR

[4] N. V. Antonov, “Renormalization group, operator product expansion and anomalous scaling in models of turbulent advection”, J. Phys. A: Math. Gen., 39:25 (2006), 7825–7866 | DOI | MR

[5] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, The Field Theoretic Renormalization Group in Fully Developed Turbulence, Gordon and Breach, London, 1999 | MR

[6] A. N. Vasilev, Kvantovopolevaya renormgruppa v teorii kriticheskogo povedeniya i stokhasticheskoi dinamike, Izd-vo PIYaF, SPb., 1998 | MR

[7] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasil'ev, “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E, 58:2 (1998), 1823–1835 | DOI | MR

[8] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Anomalous exponents to order $\varepsilon^3$ in the rapid-change model of passive scalar advection”, Phys. Rev. E, 63:2 (2001), 025303, 4 pp., arXiv: nlin/0010031 | DOI

[9] L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil'ev, “Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order $\varepsilon^3$”, Phys. Rev. E, 64:5 (2001), 056306, 28 pp., arXiv: nlin/0106023 | DOI

[10] O. G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A Mazzino, M. Repašan, “Influence of helicity on anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation”, Phys. Rev. E, 74:3 (2006), 036310, 26 pp., arXiv: nlin/0603030 | DOI | MR

[11] E. Jurčišinová, M. Jurčišin, R. Remecký, P. Zalom, “Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: two-loop renormalization group result”, Phys. Rev. E, 87:4 (2013), 043010, 12 pp. | DOI

[12] E. Jurčišinová, M. Jurčišin, P. Zalom, “Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: two-loop renormalization group result”, Phys. Rev. E, 89:4 (2014), 043023, 11 pp. | DOI

[13] E. Jurčišinová, M. Jurčišin, “Anomalous scaling of the magnetic field in the helical Kazantsev–Kraichnan model”, Phys. Rev. E, 91:6 (2015), 063009, 4 pp. | DOI

[14] N. V. Antonov, “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field”, Phys. Rev. E, 60:6 (1999), 6691–6707 | DOI | MR

[15] N. V. Antonov, “Anomalous scaling of a passive scalar advected by the synthetic compressible flow”, Phys. D, 144:3–4 (2000), 370–386 | DOI | MR

[16] N. V. Antonov, M. Hnatich, J. Honkonen, M. Jurčišin, “Turbulence with pressure: Anomalous scaling of a passive vector field”, Phys. Rev. E, 68:4 (2003), 046306, 25 pp. | DOI

[17] L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, “Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation”, Phys. Rev. E, 66:3 (2002), 036313, 11 pp., arXiv: nlin/0204044 | DOI

[18] N. V. Antonov, A. Lanotte, A. Mazzino, “Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence”, Phys. Rev. E, 61:6 (2000), 6586–6605, arXiv: nlin/0001039 | DOI

[19] L. Ts. Adzhemyan, N. V. Antonov, A. N. Vasilev, “Kvantovo-polevaya renormalizatsionnaya gruppa v teorii razvitoi turbulentnosti”, UFN, 166:12 (1996), 1257–1284 | DOI

[20] E. Jurčišinová, M. Jurčišin, “Advection of passive magnetic field by the Gaussian velocity field with finite correlations in time and spatial parity violation”, EChAYa, 44:2 (2013), 693–718

[21] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, Clarendon, Oxford, 1989 | MR

[22] N. V. Antonov, J. Honkonen, A. Mazzino, P. Muratore-Ginanneschi, “Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents”, Phys. Rev. E, 62:5 (2000), R5891–R5894 | DOI

[23] M. Hnatich, J. Honkonen, M. Jurčišin, A. Mazzino, S. Šprinc, “Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy”, Phys. Rev. E, 71:6 (2005), 066312, 15 pp. | DOI

[24] E. Jurčišinová, M. Jurčišin, “Anomalous scaling of the magnetic field in the Kazantsev–Kraichnan model”, J. Phys. A: Math. Theor., 45:48 (2012), 485501 | DOI

[25] E. Jurčišinová, M. Jurčišin, M. Menkyna, “Simultaneous influence of helicity and compressibility on anomalous scaling of the magnetic field in the Kazantsev–Kraichnan model”, Phys. Rev. E, 95:5 (2017), 053210, 28 pp. | DOI