Keywords: perturbation theory, electron–electron interaction.
@article{TMF_2019_200_2_a12,
author = {S. Teber and A. V. Kotikov},
title = {Review of electron{\textendash}electron interaction effects in planar {Dirac} liquids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {343--360},
year = {2019},
volume = {200},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a12/}
}
TY - JOUR AU - S. Teber AU - A. V. Kotikov TI - Review of electron–electron interaction effects in planar Dirac liquids JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 343 EP - 360 VL - 200 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a12/ LA - ru ID - TMF_2019_200_2_a12 ER -
S. Teber; A. V. Kotikov. Review of electron–electron interaction effects in planar Dirac liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 343-360. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a12/
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306:5696 (2004), 666–669, arXiv: cond-mat/0410550 | DOI
[2] P. R. Wallace, “The band theory of graphite”, Phys. Rev., 71:9 (1947), 622–634 | DOI
[3] G. W. Semenoff, “Condensed-matter simulation of a three-dimensional anomaly”, Phys. Rev. Lett., 53:26 (1984), 2449–2452 | DOI
[4] J. B. Marston, I. Affleck, “Large-$n$ limit of the Hubbard–Heisenberg model”, Phys. Rev. B, 39:16 (1989), 11538–11558 | DOI | MR
[5] L. B. Ioffe, A. I. Larkin, “Gapless fermions and gauge fields in dielectrics”, Phys. Rev. B, 39:13 (1989), 8988–8999 | DOI
[6] G. E. Volovik, The Universe in a Helium Droplet, Oxford Univ. Press, Oxford, 2009 | MR
[7] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene”, Nature, 438:10 (2005), 197–200, arXiv: cond-mat/0509330 | DOI
[8] A. M. J. Schakel, “Relativistic quantum Hall effect”, Phys. Rev. D, 43:4 (1991), 1428–1431 | DOI
[9] V. P. Gusynin, S. G. Sharapov, “Unconventional integer quantum Hall effect in graphene”, Phys. Rev. Lett., 95:14 (2005), 146801, 4 pp., arXiv: cond-mat/0506575 | DOI
[10] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, “The structure of suspended graphene sheets”, Nature, 446 (2007), 60–63, arXiv: cond-mat/0701379 | DOI
[11] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, M. Z. Hasan, “A topological Dirac insulator in a quantum spin Hall phase”, Nature, 452 (2008), 970–974, arXiv: 0910.2420 | DOI
[12] Y. Xia, D. Qian, D. Hsieh, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single Dirac cone on the surface”, Nature Phys., 5:6 (2009), 398–402, arXiv: 0908.3513 | DOI
[13] M. Z. Hasan, C. L. Kane, “Colloquim: Topological insulators”, Rev. Modern Phys., 82:4 (2010), 3045–3068, arXiv: 1002.3895 | DOI
[14] M. Polini, F. Guinea, M. Lewenstein, H. C. Manoharan, V. Pellegrini, “Artificial honeycomb lattices for electrons, atoms and photons”, Nature Nanotech., 8:9 (2013), 625–633, arXiv: 1304.0750 | DOI
[15] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, Y. L. Chen, “Discovery of a three-dimensional topological Dirac semimetal, Na${}_3$Bi”, Science, 343:6173 (2014), 864–867, arXiv: 1310.0391 | DOI
[16] M. Neupane, S.-Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.-R. Chang, H.-T. Jeng, H. Lin, A. Bansil, F. Chou, M. Z. Hasan, “Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd$_3$As$_2$”, Nature Commun., 5 (2014), 3786, 8 pp., arXiv: 1309.7892 | DOI
[17] S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, R. J. Cava, “Experimental realization of a three-dimensional Dirac semimetal”, Phys. Rev. Lett., 113:2 (2014), 027603, 5 pp., arXiv: 1309.7978 | DOI
[18] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, M. Z. Hasan, “A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class”, Nature Commun., 6 (2015), 7373, 6 pp. | DOI
[19] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, M. Z. Hasan, “Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide”, Nature Phys., 11 (2015), 748–745 | DOI
[20] A. Bansil, H. Lin, T. Das, “Colloquium: Topological band theory”, Rev. Modern Phys., 88:2 (2016), 021004, 37 pp., arXiv: 1603.03576 | DOI
[21] T. O. Wehling, A. M. Black-Schaffer, A. V. Balatsky, “Dirac materials”, Adv. Phys., 63:1 (2014), 1–76, arXiv: 1405.5774 | DOI
[22] W. Pan, W. Kang, K. W. Baldwin, K. W. West, L. N. Pfeiffer, D. C. Tsui, “Berry phase and anomalous transport of the composite fermions at the half-filled Landau level”, Nature Phys., 13 (2017), 1168–1172, arXiv: 1702.07307 | DOI
[23] J. González, F. Guinea, M. A. H. Vozmediano, “NonFermi liquid behavior of electrons in the half filled honeycomb lattice (a renormalization group approach)”, Nucl. Phys. B, 424:3 (1994), 595–618, arXiv: hep-th/9311105 | DOI
[24] D. C. Elias, R. V. Gorbachev, A. S. Mayorov, S. V. Morozov, A. A. Zhukov, P. Blake, L. A. Ponomarenko, I. V. Grigorieva, K. S. Novoselov, F. Guinea, A. K. Geim, “Dirac cones reshaped by interaction effects in suspended graphene”, Nature Phys., 7 (2011), 701–704, arXiv: 1104.1396 | DOI
[25] D. A. Siegel, C.-H. Parka, C. Hwangb, J. Deslippe, A. V. Fedorov, S. G. Louie, A. Lanzara, “Many-body interactions in quasi-freestanding graphene”, Proc. Natl. Acad. Sci. USA, 108:28 (2011), 11365–11369, arXiv: 1106.5822 | DOI
[26] A. A. Abrikosov, S. D. Beneslavskii, “O vozmozhnosti suschestvovaniya veschestv, promezhutochnykh mezhdu metallami i dielektrikami”, ZhETF, 59:4 (1971), 1280–1298
[27] A. Bostwick, T. Ohta, T. Seyller, K. Horn, E. Rotenberg, “Quasiparticle dynamics in graphene”, Nature Phys., 3:1 (2007), 36–40 | DOI
[28] G. Li, A. Luican, E. Y. Andrei, “Scanning tunneling spectroscopy of graphene on graphite”, Phys. Rev. Lett., 102:17 (2009), 176804, 4 pp., arXiv: 0803.4016 | DOI
[29] J. González, F. Guinea, M. A. H. Vozmediano, “Unconventional quasiparticle lifetime in graphite”, Phys. Rev. Lett., 77:15 (1996), 3589–3592, arXiv: cond-mat/9603113 | DOI
[30] J. González, F. Guinea, M. A. H. Vozmediano, “Marginal-Fermi-liquid behavior from two-dimensional Coulomb interaction”, Phys. Rev. B, 59:4 (1999), R2474–R2478, arXiv: cond-mat/9807130 | DOI
[31] J. Hofmann, E. Barnes, S. Das Sarma, “Why does graphene behave as a weakly interacting system?”, Phys. Rev. Lett., 113:10 (2014), 105502, 5 pp., arXiv: 1405.7036 | DOI
[32] V. N. Kotov, B. Uchoa, V. M. Pereira, F. Guinea, A. H. Castro Neto, “Electron-electron interactions in graphene: current status and perspectives”, Rev. Modern Phys., 84:3 (2012), 1067–1125, arXiv: 1012.3484 | DOI
[33] W. Kohn, “Cyclotron resonance and de Haas-van Alphen oscillations of an interacting electron gas”, Phys. Rev., 123:4 (1961), 1242–1244 | DOI
[34] R. E. Throckmorton, S. Das Sarma, “Failure of Kohn's theorem and $f$-sum-rule in intrinsic Dirac–Weyl materials in the presence of a filled Fermi sea”, Phys. Rev. B, 98:15 (2018), 155112, 8 pp., arXiv: 1805.03650 | DOI
[35] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, 320:5881 (2008), 1308, 5 pp. | DOI
[36] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, T. F. Heinz, “Measurement of the optical conductivity of graphene”, Phys. Rev. Lett., 101:19 (2008), 196405, 4 pp., arXiv: 0810.1269 | DOI
[37] N. M. R. Peres, “Colloquim: The transport properties of graphene: an introduction”, Rev. Modern Phys., 82:3 (2010), 2673–2700, arXiv: 1007.2849 | DOI
[38] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “Unusual microwave response of Dirac quasiparticles in graphene”, Phys. Rev. Lett., 96:25 (2006), 256802, 4 pp., arXiv: cond-mat/0603267 | DOI
[39] V. P. Gusynin, S. G. Sharapov, J. P. Carbotte, “On the universal ac optical background in graphene”, New J. Phys., 11:9 (2009), 095013, 17 pp., arXiv: 0908.2803 | DOI
[40] S. Teber, A. V. Kotikov, “Interaction corrections to the minimal conductivity of graphene via dimensional regularization”, Europhys. Lett., 107:5 (2014), 57001, arXiv: 1407.7501 | DOI
[41] S. Teber, A. V. Kotikov, “Metod unikalnostei i opticheskaya provodimost grafena: novoe primenenie moschnoi tekhniki mnogopetlevykh vychislenii”, TMF, 190:3 (2017), 519–532 | DOI | DOI | MR
[42] S. Teber, A. V. Kotikov, “Field theoretic renormalization study of interaction corrections to the universal ac conductivity of graphene”, JHEP, 07 (2018), 082, 22 pp., arXiv: 1802.09898 | DOI
[43] S. Teber, Field theoretic study of electron-electron interaction effects in Dirac liquids, arXiv: 1810.08428
[44] A. Giuliani, V. Mastropietro, M. Porta, “Absence of interaction corrections in the optical conductivity of graphene”, Phys. Rev. B, 83:19 (2011), 195401, 6 pp., arXiv: 1010.4461 | DOI
[45] E. Fradkin, “Critical behavior of disordered degenerate semiconductors. II. Spectrum and transport properties in mean-field theory”, Phys. Rev. B, 33:5 (1986), 3263–3268 | DOI
[46] P. A. Lee, “Localized states in a $d$-wave superconductor”, Phys. Rev. Lett., 71:12 (1993), 1887–1890 | DOI
[47] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, G. Grinstein, “Integer quantum Hall transition: an alternative approach and exact results”, Phys. Rev. B, 50:11 (1994), 7526–7552 | DOI
[48] E. G. Mishchenko, “Minimal conductivity in graphene: Interaction corrections and ultraviolet anomaly”, Europhys. Lett., 83:1 (2008), 17005, 6 pp., arXiv: 0709.4245 | DOI
[49] A. V. Kotikov, S. Teber, “Critical behaviour of reduced $\mathrm{QED}_{4,3}$ and dynamical fermion gap generation in graphene”, Phys. Rev. D, 94:11 (2016), 114010, 8 pp., arXiv: 1610.00934 | DOI
[50] M. S. Nevius, M. Conrad, F. Wang, A. Celis, M. N. Nair, A. Taleb-Ibrahimi, A. Tejeda, E. H. Conrad, “Semiconducting graphene from highly ordered substrate interactions”, Phys. Rev. Lett., 115:13 (2015), 136802, 5 pp., arXiv: 1505.00435 | DOI
[51] S. Teber, “Electromagnetic current correlations in reduced quantum electrodynamics”, Phys. Rev. D, 86:2 (2012), 025005, 9 pp., arXiv: 1204.5664 | DOI
[52] A. V. Kotikov, S. Teber, “Note on an application of the method of uniqueness to reduced quantum electrodynamics”, Phys. Rev. D, 87:8 (2013), 087701, 5 pp., arXiv: 1302.3939 | DOI
[53] A. V. Kotikov, S. Teber, “Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultrarelativistic limit of graphene”, Phys. Rev. D, 89:6 (2014), 065038, 24 pp., arXiv: 1312.2430 | DOI
[54] S. Teber, A. V. Kotikov, “Field theoretic renormalization study of reduced quantum electrodynamics and applications to the ultrarelativistic limit of Dirac liquids”, Phys. Rev. D, 97:7 (2018), 074004, 16 pp., arXiv: 1801.10385 | DOI
[55] R. D. Pisarski, “Chiral-symmetry breaking in three-dimensional electrodynamics”, Phys. Rev. D, 29:10 (198), 2423–2426 | DOI
[56] T. Appelquist, D. Nash, L. C. R. Wijewardhana, “Critical behavior in $(2+1)$-dimensional QED”, Phys. Rev. Lett., 60:25 (1988), 2575–2578 | DOI | MR
[57] D. Nash, “Higher-order corrections in $(2+1)$-dimensional QED”, Phys. Rev. Lett., 62:26 (1989), 3024–3026 | DOI
[58] A. V. Kotikov, “O kriticheskom povedenii trekhmernoi elektrodinamiki”, Pisma v ZhETF, 58:10 (1993), 785–789
[59] A. V. Kotikov, “On the sritical behavior of $(2+1)$-dimensional QED”, YaF, 75:7 (2012), 945–947, arXiv: 1104.3888 | DOI
[60] A. V. Kotikov, V. I. Shilin, S. Teber, “Critical behaviour of $(2+1)$-dimensional QED: $1/N_f$-corrections in the Landau gauge”, Phys. Rev. D, 94:5 (2016), 056009, 6 pp., arXiv: 1605.01911 | DOI | MR
[61] A. V. Kotikov, S. Teber, “Critical behavior of $(2+1)$-dimensional QED: $1/N_f$ corrections in an arbitrary nonlocal gauge”, Phys. Rev. D, 94:11 (2016), 114011, 9 pp., arXiv: 1609.06912 | DOI
[62] V. P. Gusynin, P. K. Pyatkovskiy, “Critical number of fermions in three-dimensional QED”, Phys. Rev. D, 94:12 (2016), 125009, 14 pp., arXiv: 1607.08582 | DOI | MR
[63] H. Isobe, N. Nagaosa, “Coulomb interaction effect in Weyl Fermions with tilted energy dispersion in two dimensions”, Phys. Rev. Lett., 116:11 (2016), 116803, 5 pp., arXiv: 1512.08704 | DOI
[64] E. Barnes, E. H. Hwang, R. E. Throckmorton, S. Das Sarma, “Effective field theory, three-loop perturbative expansion, and their experimental implications in graphene many-body effects”, Phys. Rev. B, 89:23 (2014), 235431, 57 pp., arXiv: 1401.7011 | DOI
[65] E. V. Gorbar, V. P. Gusynin, V. A. Miransky, “Dynamical chiral symmetry breaking on a brane in reduced QED”, Phys. Rev. D, 64:10 (2001), 105028, 16 pp., arXiv: hep-ph/0105059 | DOI
[66] A. V. Kotikov, S. Teber, “Multi-loop techniques for massless Feynman diagram calculations”, Phys. Part. Nucl., 50:1 (2019), 1–41, arXiv: 1805.05109 | DOI
[67] S. Laporta, “High-precision calculation of multiloop Feynman integrals by difference equations”, Internat. J. Modern Phys. A, 15:32 (2000), 5087–5159, arXiv: hep-ph/0102033 | DOI | MR
[68] R. N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, arXiv: ;; “LiteRed 1.4: a powerful tool for reduction of multiloop integrals”, J. Phys. Conf.: Ser., 523:1 (2014), 012059, 8 pp., arXiv: 1212.26851310.1145 | DOI
[69] B. Ruijl, T. Ueda, J. A. M. Vermaseren, Forcer, a FORM program for the parametric reduction of four-loop massless propagator diagrams, arXiv: 1704.06650
[70] K. G. Chetyrkin, F. V. Tkachov, “Integration by parts: the algorithm to calculate $\beta$-functions in 4 loops”, Nucl. Phys. B, 192:1 (1981), 159–204 | DOI
[71] K. G. Chetyrkin, G. Falcioni, F. Herzog, J. A. M. Vermaseren, “The method of global $R*$ and its applications”, PoS (RADCOR 2017), 290 (2018), 004, 10 pp., arXiv: 1801.03024 | DOI
[72] S. Hu, O. Schnetz, J. Shaw, K. Yeats, Further investigations into the graph theory of $\phi^4$-periods and the $c_2$ invariant, arXiv: 1812.08751
[73] J. A. Gracey, T. Luthe, Y. Schröder, “Four loop renormalization of the Gross–Neveu model”, Phys. Rev. D, 94:12 (2016), 125028, 18 pp., arXiv: 1609.05071 | DOI | MR
[74] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, “Five-loop running of the QCD coupling constant”, Phys. Rev. Lett., 118:8 (2017), 082002, 4 pp., arXiv: 1606.08659 | DOI
[75] T. Luthe, A. Maier, P. Marquard, Y. Schröder, “Five-loop quark mass and field anomalous dimensions for a general gauge group”, JHEP, 01 (2017), 081, 14 pp., arXiv: 1612.05512 | DOI
[76] T. Luthe, A. Maier, P. Marquard, Y. Schröder, “Complete renormalization of QCD at five loops”, JHEP, 03 (2017), 020, 15 pp., arXiv: 1701.07068 | DOI
[77] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren, A. Vogt, “The five-loop beta function of Yang–Mills theory with fermions”, JHEP, 02 (2017), 090, 18 pp., arXiv: 1701.01404 | DOI | MR
[78] K. G. Chetyrkin, G. Falcioni, F. Herzog, J. A. M. Vermaseren, “Five-loop renormalisation of QCD in covariant gauges”, JHEP, 10 (2017), 179, 18 pp. | DOI | MR
[79] T. Luthe, A. Maier, P. Marquard, Y. Schröder, “The five-loop beta function for a general gauge group and anomalous dimensions beyond Feynman gauge”, JHEP, 10 (2017), 166, 19 pp., arXiv: 1709.0771 | DOI | MR
[80] D. V. Batkovich, K. G. Chetyrkin, M. V. Kompaniets, “Six loop analytical calculation of the field anomalous dimension and the critical exponent $\eta$ in $O(n)$-symmetric $\varphi^4$ model”, Nucl. Phys. B, 906 (2016), 147–167, arXiv: 1601.01960 | DOI | MR
[81] M. Kompaniets, E. Panzer, “Renormalization group functions of $\phi^4$ theory in the MS-scheme to six loops”, PoS (LL2016), 260 (2016), 038, 16 pp., arXiv: 1606.09210 | DOI
[82] M. V. Kompaniets, E. Panzer, “Minimally subtracted six loop renormalization of $O(n)$-symmetric $\phi^4$ theory and critical exponents”, Phys. Rev. D, 96:3 (2017), 036016, 26 pp., arXiv: 1705.06483 | DOI | MR
[83] O. Schnetz, “Numbers and functions in quantum field theory”, Phys. Rev. D, 97:8 (2018), 085018, 20 pp., arXiv: 1606.08598 | DOI
[84] C. Marboe, V. Velizhanin, “Twist-2 at seven loops in planar $\mathcal{N} $=4 SYM theory: full result and analytic properties”, JHEP, 11 (2016), 013, 18 pp., arXiv: 1607.06047 | DOI | MR
[85] D. I. Kazakov, “Vychislenie feinmanovskikh integralov metodom ‘unikalnostei’ ”, TMF, 58:3 (1984), 343–353 | DOI | MR
[86] R. Jackiw, S. Templeton, “How super-renormalizable interactions cure their infrared divergences”, Phys. Rev. D, 23:10 (1981), 2291–2304 | DOI
[87] E. I. Guendelman, Z. M. Radulovic, “Loop expansion in massless three-dimensional QED”, Phys. Rev. D, 27:2 (1983), 357–365 | DOI
[88] E. I. Guendelman, Z. M. Radulovic, “Infrared divergences in three-dimensional gauge theories”, Phys. Rev. D, 30:6 (1984), 1338–1348 | DOI
[89] T. Appelquist, R. D. Pisarski, “High-temperature Yang–Mills theories and three-dimensional quantum chromodynamics”, Phys. Rev. D, 23:10 (1981), 2305–2317 | DOI
[90] T. Appelquist, U. W. Heinz, “Three-dimensional $O(n)$ theories at large distances”, Phys. Rev. D, 24:8 (1981), 2169–2181 | DOI
[91] A. V. Kotikov, S. Teber, “Addendum to `Critical behaviour of $(2+1)$-dimensional QED: $1/N_f$-corrections in an arbitrary non-local gauge' ”, Phys. Rev. D, 99:5 (2019), 059902, 5 pp., arXiv: 1902.03790 | DOI
[92] E. E. Boos, A. I. Davydychev, “Metod vychisleniya massivnykh feinmanovskikh integralov”, TMF, 89:1 (1991), 56–72 | DOI | MR
[93] A. V. Kotikov, “Differential equations method: the calculation of vertex type Feynman diagrams”, Phys. Lett. B, 259:3 (1991), 314–322 | DOI | MR
[94] N. N. Bogoliubov, O. S. Parasiuk, “Über die Multiplikation der Kauzalfunktionen der Quantentheorie der Felder”, Acta Math., 97 (1957), 227–266 | DOI | MR
[95] K. Hepp, “Proof of the Bogolyubov–Parasiuk theorem on renormalization”, Commun. Math. Phys., 2:1 (1966), 301–326 | DOI
[96] W. Zimmermann, “Convergence of Bogoliubov's method of renormalization in momentum space”, Commun. Math. Phys., 15:3 (1969), 208–234 | DOI | MR