@article{TMF_2019_200_2_a11,
author = {O. V. Tarasov},
title = {Using functional equations to calculate {Feynman} integrals},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {324--342},
year = {2019},
volume = {200},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a11/}
}
O. V. Tarasov. Using functional equations to calculate Feynman integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 324-342. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a11/
[1] G. Aad, T. Abajyan, B. Abbott et al., “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B, 716:1 (2012), 1–29, arXiv: 1207.7214 | DOI
[2] S. Chatrchyan, V. Khachatryan, A. M. Sirunyan et al., “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B, 716:1 (2012), 30–61, arXiv: 1207.7235 | DOI
[3] Future Circular Collider ; \par https://en.wikipedia.org/wiki/Future_Circular_Collider
[4] D. I. Kazakov, “Mnogopetlevye vychisleniya: metod unikalnostei i funktsionalnye uravneniya”, TMF, 62:1 (1985), 127–135 | DOI
[5] S. Laporta, “High-precision calculation of multiloop Feynman integrals by difference equations”, Internat. J. Modern Phys. A, 15:32 (2000), 5087–5159, arXiv: hep-ph/0102033 | DOI | MR
[6] O. V. Tarasov, “New relationships between Feynman integrals”, Phys. Lett. B, 670:1 (2008), 67–72, arXiv: 0809.3028 | DOI | MR
[7] O. V. Tarasov, “Derivation of functional equations for Feynman integrals from algebraic relations”, JHEP, 11 (2017), 038, 22 pp., arXiv: 1512.09024 | DOI | MR
[8] A. I. Davydychev, “Geometrical splitting and reduction of Feynman diagrams”, J. Phys. Conf. Ser., 762:1 (2016), 012068, 7 pp. | DOI
[9] A. I. Davydychev, “Four-point function in general kinematics through geometrical splitting and reduction”, J. Phys. Conf. Ser., 1085:5 (2018), 052016, 8 pp. | DOI
[10] O. V. Tarasov, “Functional equations for Feynman integrals”, Phys. Part. Nucl. Lett., 8 (2011), 419–427 | DOI
[11] E. W. N. Glover, C. Oleari, M. E. Tejeda-Yeomans, “Two-loop QCD corrections to gluon-gluon scattering”, Nucl. Phys. B, 605:1–3 (2001), 467–485 | DOI
[12] E. W. N. Glover, M. E. Tejeda-Yeomans, “One-loop QCD corrections to gluon-gluon scattering at NNLO”, JHEP, 05 (2001), 010, 19 pp. | DOI
[13] C. Anastasiou, E. W. N. Glover, C. Oleari, M. E. Tejeda-Yeomans, “Two-loop QCD corrections to massless quark-gluon scattering”, Nucl. Phys. B, 605:1 (2001), 486–516, arXiv: hep-ph/0101304 | DOI
[14] E. W. N. Glover, M. E. Tejeda-Yeomans, “Two-loop QCD helicity amplitudes for massless quark-massless gauge boson scattering”, JHEP, 06 (2003), 033, 46 pp. | DOI
[15] Z. Bern, L. J. Dixon, V. A. Smirnov, “Iteration of planar amplitudes in maximally supersymmetric Yang–Mills theory at three loops and beyond”, Phys. Rev. D, 72:8 (2005), 085001, 27 pp., arXiv: hep-th/0505205 | DOI | MR
[16] J. D. Aczél, J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31, Cambridge Univ. Press, Cambridge, 1989 | DOI | MR
[17] E. Castillo, A. Iglesias, R. Ruiz-Cobo, Functional Equations in Applied Sciences, Mathematics in Science and Engineering, 199, Elsevier, Amsterdam, 2005 | MR
[18] M. Kuczma, “A survey of the theory of functional equations”, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz., 130 (1964), 1–64 | MR
[19] C. G. Small, Functional Equations and How to Solve Them, Springer, New York, 2006 | DOI | MR
[20] T. M. Rassias, Functional Equations and Inequalities, Mathematics and Its Applications, 518, Kluwer, Dordrecht, 2000 | DOI | MR
[21] C. Efthimiou, Introduction to Functional Equations. Theory and Problem-Solving Strategies for Mathematical Competitions and Beyond, MSRI Mathematical Circles Library, 6, AMS, Providence, RI, 2011 | MR
[22] J. Aczél, Lectures on Functional Equations and Their Applications, Mathematics in Science and Engineering, 19, Academic Press, New York, 1966 | MR | Zbl
[23] D. M. Sintsov, “Zametki po funktsionalnomu ischisleniyu”, Izv. Kazan. fiz.-matem. ob-va, 13:2 (1903), 46–72
[24] D. M. Sincov, “Über eine Funktionalgleichung”, Arch. Math. Phys. (3), 6 (1903), 216–217
[25] C. G. Bollini, J. J. Giambiagi, “Lowest order “divergent” graphs in $\nu$-dimensional space”, Phys. Lett. B, 40:5 (1972), 566–568 | DOI
[26] E. E. Boos, A. I. Davydychev, “Metod vychisleniya massivnykh feinmanovskikh integralov”, TMF, 89:1 (1991), 56–72 | DOI | MR
[27] O. V. Tarasov, “Connection between Feynman integrals having different values of the space-time dimension”, Phys. Rev. D, 54:10 (1996), 6479–6490, arXiv: hep-th/9606018 | DOI | MR
[28] O. V. Tarasov, “Application and explicit solution of recurrence relations with respect to space-time dimension”, Nucl. Phys. Proc. Suppl., 89:1 (2000), 237–245, arXiv: hep-ph/0102271 | DOI
[29] S. Borowka, G. Heinrich, S. Jahn, S. P. Jones, M. Kerner, J. Schlenk, T. Zirke, “pySecDec: A toolbox for the numerical evaluation of multi-scale integrals”, Comput. Phys. Commun., 222 (2009), 313–326, arXiv: 1703.09692 | DOI
[30] Z. Bern, L. J. Dixon, D. A. Kosower, “One-loop corrections to five-gluon amplitudes”, Phys. Rev. Lett., 70:18 (1993), 2677–2680, arXiv: hep-ph/9302280 | DOI
[31] G. Duplančić, B. Nižić, “Dimensionally regulated one-loop box scalar integrals with massless internal lines”, Eur. Phys. J. C, 20:2 (2001), 357–370, arXiv: hep-ph/0006249 | DOI
[32] G. Duplančić, B. Nižić, “IR finite one loop box scalar integral with massless internal lines”, Eur. Phys. J. C, 24:2 (2002), 385–391 | DOI
[33] J. Fleischer, F. Jegerlehner, O. V. Tarasov, “Algebraic reduction of one loop Feynman graph amplitudes”, Nucl. Phys. B, 566:1 (2000), 423–440, arXiv: hep-ph/9907327 | DOI | MR
[34] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Nauka, M., 1973 | MR
[35] P. O. M. Olsson, “Integration of the partial differential equations for the hypergeometric functions $F_1$ and $F_D$ of two and more variables”, J. Math. Phys., 5:3 (1964), 420–430 | DOI | MR
[36] S. I. Bezrodnykh, “Analiticheskoe prodolzhenie funktsii Appelya $F_1$ i integrirovanie svyazannoi s nei sistemy uravnenii v logarifmicheskom sluchae”, Zh. vychisl. matem. i matem. fiz., 57:4 (2017), 555–587 | DOI | DOI | MR
[37] T. Huber, D. Maitre, “HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters”, Comput. Phys. Commun., 175:2 (2006), 122–144, arXiv: hep-ph/0507094 | DOI
[38] L. V. Bork, D. I. Kazakov, D. E. Vlasenko, “On the amplitudes in $\mathcal{N}=(1,1)$ $D=6$ SYM”, JHEP, 11 (2013), 065, arXiv: 1308.0117 | DOI