Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 173-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of spectral sum rules in the planar limit of quantum chromodynamics, we propose two new methods for calculating the spectra of light mesons based on using linear radial Regge trajectories and the simplest quark–antiquark operators interpolating meson states. Both methods predict a resonance near $500$ MeV in the scalar–isoscalar channel, which hypothetically corresponds to the lightest scalar hadron, the $\sigma$-meson. This can mean that the quark–antiquark component is strongly dominating in its structure even if the $\sigma$-meson is a tetraquark state. In one of the methods, we obtain a reasonable agreement with experimental data using only two input parameters: the phenomenological value of the gluon condensate and the weak decay constant of the pion. In this case, the predicted quark condensate value agrees well with contemporary lattice computation results.
Keywords: meson spectroscopy, quantum chromodynamics, spectral sum rules, planar limit.
@article{TMF_2019_200_2_a0,
     author = {S. S. Afonin and T. D. Solomko},
     title = {Radial spectrum of light mesons in planar {QCD} sum rules and the~scalar sigma-meson},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {173--194},
     year = {2019},
     volume = {200},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/}
}
TY  - JOUR
AU  - S. S. Afonin
AU  - T. D. Solomko
TI  - Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 173
EP  - 194
VL  - 200
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/
LA  - ru
ID  - TMF_2019_200_2_a0
ER  - 
%0 Journal Article
%A S. S. Afonin
%A T. D. Solomko
%T Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 173-194
%V 200
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/
%G ru
%F TMF_2019_200_2_a0
S. S. Afonin; T. D. Solomko. Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/

[1] M. Tanabashi, K. Hagiwara, K. Hikasa et al. [Particle Data Group], “Review of Particle Physics”, Phys. Rev. D, 98:3 (2018), 030001, 1898 pp. | DOI

[2] J. R. Peláez, “From controversy to precision on the sigma meson: a review on the status of the non-ordinary $f_0(500)$ resonance”, Phys. Rept., 658:1 (2016), 1–111, arXiv: 1510.00653 | DOI

[3] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “QCD and resonance physics. Theoretical foundations”, Nucl. Phys. B, 147:5 (1979), 385–447 | DOI | MR

[4] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “QCD and resonance physics. Applications”, Nucl. Phys. B, 147:5 (1979), 448–518 | DOI | MR

[5] L. J. Reinders, H. Rubinstein, S. Yazaki, “Hadron properties from QCD sum rules”, Phys. Rept., 127:1 (1985), 1–97 | DOI

[6] M. A. Shifman, “Snapshots of hadrons. Or the story of how the vacuum medium determines the properties of the classical mesons which are produced, live and die in the QCD vacuum”, Prog. Theor. Phys. Suppl., 131 (1998), 1–71, arXiv: hep-ph/9802214 | DOI

[7] P. Colangelo, A. Khodjamirian, “QCD sum rules, a modern perspective”, At The Frontier of Particle Physics, ed. M. Shifman, World Sci., Singapore, 2001, 1495–1576, arXiv: hep-ph/0010175 | DOI

[8] P. Gubler, D. Satow, “Recent progress in QCD condensate evaluations and sum rules”, Prog. Part. Nucl. Phys., 106 (2018), 1–67, arXiv: 1812.00385 | DOI

[9] S. S. Afonin, “Weinberg like sum rules revisited”, PMC Phys. A, 3:1 (2009), 29 pp., arXiv: 0710.4921 | DOI

[10] G. 't Hooft, “A planar diagram theory for strong interactions”, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI

[11] E. Witten, “Baryons in the 1/N expansion”, Nucl. Phys. B, 160:1 (1979), 57–115 | DOI

[12] A. V. Anisovich, V. V. Anisovich, A. V. Sarantsev, “Systematics of $q\bar q$ states in the $(n,M^2)$ and $(J,M^2)$ planes”, Phys. Rev. D, 62:5 (2000), 051502, 5 pp., arXiv: hep-ph/0003113 | DOI

[13] D. V. Bugg, “Four sorts of meson”, Phys. Rept., 397:5 (2004), 257–358, arXiv: hep-ex/0412045 | DOI

[14] S. S. Afonin, “Properties of new unflavored mesons below 2.4\;GeV”, Phys. Rev. C, 76:1 (2007), 015202, 5 pp., arXiv: 0707.0824 | DOI

[15] S. S. Afonin, “Towards understanding broad degeneracy in non-strange mesons”, Modern Phys. Lett. A, 22:19 (2007), 1359–1371, arXiv: hep-ph/0701089 | DOI

[16] M. Golterman, S. Peris, “Large-$N_\mathrm{c}$ QCD meets Regge theory: the example of spin one two point functions”, JHEP, 01 (2001), 028, 17 pp., arXiv: hep-ph/0101098 | DOI

[17] S. S. Afonin, A. A. Andrianov, V. A. Andrianov, D. Espriu, “Matching Regge theory to the OPE”, JHEP, 04 (2004), 039, 24 pp., arXiv: hep-ph/0403268 | DOI

[18] S. S. Afonin, D. Espriu, “Qualitative solution of QCD sum rules”, JHEP, 09 (2006), 047, 19 pp., arXiv: hep-ph/0602219 | DOI | MR

[19] S. S. Afonin, T. D. Solomko, “The sigma meson from QCD sum rules for large-$N_\mathrm{c}$ Regge spectra”, Eur. Phys. J. C, 76:12 (2016), 678, arXiv: 1608.08131 | DOI

[20] E. Ruiz Arriola, W. Broniowski, “Scalar-isoscalar states in the large-$N_\mathrm{c}$ Regge approach”, Phys. Rev. D, 81:5 (2010), 054009, 18 pp., arXiv: 1001.1636 | DOI

[21] S. S. Afonin, T. D. Solomko, “Large-$N_v$ masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories”, Internat. J. Modern Phys. A, 33:12 (2018), 1850069, 14 pp. | DOI

[22] M. Shifman, “Quark-hadron duality”, At The Frontier of Particle Physics, ed. M. Shifman, World Sci., Singapore, 2001, 1447–1494, arXiv: ; “Highly excited hadrons in QCD and beyond”, Quark-Hadron Duality and the Transition to PQCD (Frascati, Italy, 6–8 June, 2005), eds. A. Fantoni, S. Liuti, O. A. Rondón, Worlsd Sci., Singapore, 2006, 171–191, arXiv: ; S. Beane, “Constraining quark-hadron duality at large ${N}_{c}$”, Phys. Rev. D, 64:11 (2001), 116010, 8 pp., arXiv: ; Ю. А. Симонов, “Пертурбативные разложения в КХД и аналитические свойства $\alpha_s$”, ЯФ, 65:1 (2002), 140–157, arXiv: ; S. S. Afonin, “Quark condensate and deviations from string-like behaviour of meson spectra”, Phys. Lett. B, 576:1–2 (2003), 122–126, arXiv: ; “Cluster duality”, Nucl. Phys. B, 779:1 (2007), 13–31, arXiv: ; V. I. Shevchenko, Yu. A. Simonov, “Current correlators in QCD: Operator product expansion versus large distance dynamics”, Phys. Rev. D, 70:7 (2004), 074012, 14 pp., arXiv: ; M. Golterman, S. Peris, “Use of the operator product expansion to constrain the hadron spectrum”, Phys. Rev. D, 67:9 (2003), 096001, 5 pp., arXiv: ; O. Cata, M. Golterman, S. Peris, “Duality violations and spectral sum rules”, JHEP, 08 (2005), 076, 29 pp., arXiv: ; E. R. Arriola, W. Broniowski, “Dimension-two gluon condensate from large-$N_\mathrm{c}$ Regge models”, Phys. Rev. D, 73:9 (2006), 097502, 4 pp. ; “Dimension-2 condensates, $\zeta$-regularization and large-$N_\mathrm{c}$ Regge models”, Eur. Phys. J. A, 31:4 (2007), 739–741, arXiv: ; J. J. Sanz-Cillero, “Spin-1 correlators at large $N_\mathrm{c}$: matching OPE and resonance theory up to $\mathscr{O}(\alpha_s)$”, Nucl. Phys. B, 732:1–2 (2006), 136–168, arXiv: ; J. Mondejar, A. Pineda, “Constraints on Regge models from perturbation theory”, JHEP, 10 (2007), 061, 13 pp., arXiv: ; A. A. Andrianov, D. Espriu, “Weinberg sum rules and the parity doubling of radial Regge trajectories”, Phys. Lett. B, 671:2 (2009), 275–279, arXiv: hep-ph/0009131hep-ph/0507246hep-ph/0106022hep-ph/0109081hep-ph/0309337hep-ph/0606291hep-ph/0406276hep-ph/0207060hep-ph/0506004hep-ph/0609266hep-ph/05071860704.14170803.4104 | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI

[23] S. S. Afonin, “Holographic-like models as a five-dimensional rewriting of large-$N_\mathrm{c}$ QCD”, Internat. J. Modern Phys. A, 25:31 (2010), 5683–5710, arXiv: 1001.3105 | DOI

[24] S. Weinberg, “Precise relations between the spectra of vector and axial vector mesons”, Phys. Rev. Lett., 18:13 (1967), 507–509 | DOI

[25] J. Gasser, H. Leutwyler, “Chiral perturbation theory: expansions in the mass of the strange quark”, Nucl. Phys. B, 250:1 (1985), 465–516 | DOI

[26] S. Aoki, Y. Aoki, D. Bečirević, “Review of lattice results concerning low-energy particle physics”, Eur. Phys. J. C, 77:2 (2017), 112, 228 pp., arXiv: 1607.00299 | DOI

[27] S. S. Afonin, A. D. Katanaeva, “Lagrangian alternative to QCD string”, Eur. Phys. J. C, 73:8 (2013), 2529, 10 pp., arXiv: 1307.6936 | DOI

[28] J. T. Londergan, J. Nebreda, J. R. Pelaez, A. Szczepaniak, “Identification of non-ordinary mesons from the dispersive connection between their poles and their Regge trajectories: the $f_0(500)$ resonance”, Phys. Lett. B, 729 (2014), 9–14, arXiv: 1311.7552 | DOI

[29] S. S. Afonin, “Lower and upper bounds on the mass of light quark-antiquark scalar resonance in the SVZ sum rules”, Internat. J. Modern Phys. A, 31:32 (2016), 1650164, 12 pp., arXiv: 1605.07040 | DOI