@article{TMF_2019_200_2_a0,
author = {S. S. Afonin and T. D. Solomko},
title = {Radial spectrum of light mesons in planar {QCD} sum rules and the~scalar sigma-meson},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {173--194},
year = {2019},
volume = {200},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/}
}
TY - JOUR AU - S. S. Afonin AU - T. D. Solomko TI - Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 173 EP - 194 VL - 200 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/ LA - ru ID - TMF_2019_200_2_a0 ER -
S. S. Afonin; T. D. Solomko. Radial spectrum of light mesons in planar QCD sum rules and the scalar sigma-meson. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 2, pp. 173-194. http://geodesic.mathdoc.fr/item/TMF_2019_200_2_a0/
[1] M. Tanabashi, K. Hagiwara, K. Hikasa et al. [Particle Data Group], “Review of Particle Physics”, Phys. Rev. D, 98:3 (2018), 030001, 1898 pp. | DOI
[2] J. R. Peláez, “From controversy to precision on the sigma meson: a review on the status of the non-ordinary $f_0(500)$ resonance”, Phys. Rept., 658:1 (2016), 1–111, arXiv: 1510.00653 | DOI
[3] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “QCD and resonance physics. Theoretical foundations”, Nucl. Phys. B, 147:5 (1979), 385–447 | DOI | MR
[4] M. A. Shifman, A. I. Vainshtein, V. I. Zakharov, “QCD and resonance physics. Applications”, Nucl. Phys. B, 147:5 (1979), 448–518 | DOI | MR
[5] L. J. Reinders, H. Rubinstein, S. Yazaki, “Hadron properties from QCD sum rules”, Phys. Rept., 127:1 (1985), 1–97 | DOI
[6] M. A. Shifman, “Snapshots of hadrons. Or the story of how the vacuum medium determines the properties of the classical mesons which are produced, live and die in the QCD vacuum”, Prog. Theor. Phys. Suppl., 131 (1998), 1–71, arXiv: hep-ph/9802214 | DOI
[7] P. Colangelo, A. Khodjamirian, “QCD sum rules, a modern perspective”, At The Frontier of Particle Physics, ed. M. Shifman, World Sci., Singapore, 2001, 1495–1576, arXiv: hep-ph/0010175 | DOI
[8] P. Gubler, D. Satow, “Recent progress in QCD condensate evaluations and sum rules”, Prog. Part. Nucl. Phys., 106 (2018), 1–67, arXiv: 1812.00385 | DOI
[9] S. S. Afonin, “Weinberg like sum rules revisited”, PMC Phys. A, 3:1 (2009), 29 pp., arXiv: 0710.4921 | DOI
[10] G. 't Hooft, “A planar diagram theory for strong interactions”, Nucl. Phys. B, 72:3 (1974), 461–473 | DOI
[11] E. Witten, “Baryons in the 1/N expansion”, Nucl. Phys. B, 160:1 (1979), 57–115 | DOI
[12] A. V. Anisovich, V. V. Anisovich, A. V. Sarantsev, “Systematics of $q\bar q$ states in the $(n,M^2)$ and $(J,M^2)$ planes”, Phys. Rev. D, 62:5 (2000), 051502, 5 pp., arXiv: hep-ph/0003113 | DOI
[13] D. V. Bugg, “Four sorts of meson”, Phys. Rept., 397:5 (2004), 257–358, arXiv: hep-ex/0412045 | DOI
[14] S. S. Afonin, “Properties of new unflavored mesons below 2.4\;GeV”, Phys. Rev. C, 76:1 (2007), 015202, 5 pp., arXiv: 0707.0824 | DOI
[15] S. S. Afonin, “Towards understanding broad degeneracy in non-strange mesons”, Modern Phys. Lett. A, 22:19 (2007), 1359–1371, arXiv: hep-ph/0701089 | DOI
[16] M. Golterman, S. Peris, “Large-$N_\mathrm{c}$ QCD meets Regge theory: the example of spin one two point functions”, JHEP, 01 (2001), 028, 17 pp., arXiv: hep-ph/0101098 | DOI
[17] S. S. Afonin, A. A. Andrianov, V. A. Andrianov, D. Espriu, “Matching Regge theory to the OPE”, JHEP, 04 (2004), 039, 24 pp., arXiv: hep-ph/0403268 | DOI
[18] S. S. Afonin, D. Espriu, “Qualitative solution of QCD sum rules”, JHEP, 09 (2006), 047, 19 pp., arXiv: hep-ph/0602219 | DOI | MR
[19] S. S. Afonin, T. D. Solomko, “The sigma meson from QCD sum rules for large-$N_\mathrm{c}$ Regge spectra”, Eur. Phys. J. C, 76:12 (2016), 678, arXiv: 1608.08131 | DOI
[20] E. Ruiz Arriola, W. Broniowski, “Scalar-isoscalar states in the large-$N_\mathrm{c}$ Regge approach”, Phys. Rev. D, 81:5 (2010), 054009, 18 pp., arXiv: 1001.1636 | DOI
[21] S. S. Afonin, T. D. Solomko, “Large-$N_v$ masses of light mesons from QCD sum rules for nonlinear radial Regge trajectories”, Internat. J. Modern Phys. A, 33:12 (2018), 1850069, 14 pp. | DOI
[22] M. Shifman, “Quark-hadron duality”, At The Frontier of Particle Physics, ed. M. Shifman, World Sci., Singapore, 2001, 1447–1494, arXiv: ; “Highly excited hadrons in QCD and beyond”, Quark-Hadron Duality and the Transition to PQCD (Frascati, Italy, 6–8 June, 2005), eds. A. Fantoni, S. Liuti, O. A. Rondón, Worlsd Sci., Singapore, 2006, 171–191, arXiv: ; S. Beane, “Constraining quark-hadron duality at large ${N}_{c}$”, Phys. Rev. D, 64:11 (2001), 116010, 8 pp., arXiv: ; Ю. А. Симонов, “Пертурбативные разложения в КХД и аналитические свойства $\alpha_s$”, ЯФ, 65:1 (2002), 140–157, arXiv: ; S. S. Afonin, “Quark condensate and deviations from string-like behaviour of meson spectra”, Phys. Lett. B, 576:1–2 (2003), 122–126, arXiv: ; “Cluster duality”, Nucl. Phys. B, 779:1 (2007), 13–31, arXiv: ; V. I. Shevchenko, Yu. A. Simonov, “Current correlators in QCD: Operator product expansion versus large distance dynamics”, Phys. Rev. D, 70:7 (2004), 074012, 14 pp., arXiv: ; M. Golterman, S. Peris, “Use of the operator product expansion to constrain the hadron spectrum”, Phys. Rev. D, 67:9 (2003), 096001, 5 pp., arXiv: ; O. Cata, M. Golterman, S. Peris, “Duality violations and spectral sum rules”, JHEP, 08 (2005), 076, 29 pp., arXiv: ; E. R. Arriola, W. Broniowski, “Dimension-two gluon condensate from large-$N_\mathrm{c}$ Regge models”, Phys. Rev. D, 73:9 (2006), 097502, 4 pp. ; “Dimension-2 condensates, $\zeta$-regularization and large-$N_\mathrm{c}$ Regge models”, Eur. Phys. J. A, 31:4 (2007), 739–741, arXiv: ; J. J. Sanz-Cillero, “Spin-1 correlators at large $N_\mathrm{c}$: matching OPE and resonance theory up to $\mathscr{O}(\alpha_s)$”, Nucl. Phys. B, 732:1–2 (2006), 136–168, arXiv: ; J. Mondejar, A. Pineda, “Constraints on Regge models from perturbation theory”, JHEP, 10 (2007), 061, 13 pp., arXiv: ; A. A. Andrianov, D. Espriu, “Weinberg sum rules and the parity doubling of radial Regge trajectories”, Phys. Lett. B, 671:2 (2009), 275–279, arXiv: hep-ph/0009131hep-ph/0507246hep-ph/0106022hep-ph/0109081hep-ph/0309337hep-ph/0606291hep-ph/0406276hep-ph/0207060hep-ph/0506004hep-ph/0609266hep-ph/05071860704.14170803.4104 | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI | DOI
[23] S. S. Afonin, “Holographic-like models as a five-dimensional rewriting of large-$N_\mathrm{c}$ QCD”, Internat. J. Modern Phys. A, 25:31 (2010), 5683–5710, arXiv: 1001.3105 | DOI
[24] S. Weinberg, “Precise relations between the spectra of vector and axial vector mesons”, Phys. Rev. Lett., 18:13 (1967), 507–509 | DOI
[25] J. Gasser, H. Leutwyler, “Chiral perturbation theory: expansions in the mass of the strange quark”, Nucl. Phys. B, 250:1 (1985), 465–516 | DOI
[26] S. Aoki, Y. Aoki, D. Bečirević, “Review of lattice results concerning low-energy particle physics”, Eur. Phys. J. C, 77:2 (2017), 112, 228 pp., arXiv: 1607.00299 | DOI
[27] S. S. Afonin, A. D. Katanaeva, “Lagrangian alternative to QCD string”, Eur. Phys. J. C, 73:8 (2013), 2529, 10 pp., arXiv: 1307.6936 | DOI
[28] J. T. Londergan, J. Nebreda, J. R. Pelaez, A. Szczepaniak, “Identification of non-ordinary mesons from the dispersive connection between their poles and their Regge trajectories: the $f_0(500)$ resonance”, Phys. Lett. B, 729 (2014), 9–14, arXiv: 1311.7552 | DOI
[29] S. S. Afonin, “Lower and upper bounds on the mass of light quark-antiquark scalar resonance in the SVZ sum rules”, Internat. J. Modern Phys. A, 31:32 (2016), 1650164, 12 pp., arXiv: 1605.07040 | DOI