@article{TMF_2019_200_1_a9,
author = {T. O. Voronkova and A. M. Sarry and M. F. Sarry and S. G. Skidan},
title = {Self-consistent approach to solving the~problem of crystal lattice formation in an~electron{\textendash}hole plasma},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {158--170},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a9/}
}
TY - JOUR AU - T. O. Voronkova AU - A. M. Sarry AU - M. F. Sarry AU - S. G. Skidan TI - Self-consistent approach to solving the problem of crystal lattice formation in an electron–hole plasma JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 158 EP - 170 VL - 200 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a9/ LA - ru ID - TMF_2019_200_1_a9 ER -
%0 Journal Article %A T. O. Voronkova %A A. M. Sarry %A M. F. Sarry %A S. G. Skidan %T Self-consistent approach to solving the problem of crystal lattice formation in an electron–hole plasma %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 158-170 %V 200 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a9/ %G ru %F TMF_2019_200_1_a9
T. O. Voronkova; A. M. Sarry; M. F. Sarry; S. G. Skidan. Self-consistent approach to solving the problem of crystal lattice formation in an electron–hole plasma. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 158-170. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a9/
[1] V. E. Fortov, Uravneniya sostoyaniya veschestva ot idealnogo gaza do kvark-glyuonnoi plazmy, Fizmatlit, M., 2013
[2] P. Abbamonte, G. Blumberg, A. Rusydi, A. Gozar, P. G. Evans, T. Siegrist, L. Venema, H. Eisaki, E. D. Isaacs, G. A. Sawatzky, “Crystallization of charge holes in the spin ladder of Sr$_14$Cu$_24$O$_41$”, Nature, 431 (2004), 1078–1081 | DOI
[3] S. K. Sarker, H. R. Krishnamurthy, C. Jayaprakash, W. Wenzel, “Mean-field theories of Hubbard and $t$-$J$ models”, Phys. B, 163:1–3 (1990), 541–543 | DOI
[4] E. P. Wigner, “On the interaction of electrons in metals”, Phys. Rev., 46:11 (1934), 1002–1011 | DOI
[5] S. Reims, Teoriya mnogoelektronnykh sistem, Mir, M., 1976
[6] J. Hubbard, “Electron correlations in narrow energy bands”, Proc. Roy. Soc. London Ser. A, 236 (1963), 238 | DOI
[7] H. Shiba, “Thermodynamic properties of the one-dimensional half-filled-band Hubbard model: II. Application of the grand canonical method”, Prog. Theor. Phys., 48:6 (1972), 2171–2186 | DOI
[8] M. F. Sarry, “Analiticheskie metody vychisleniya korrelyatsionnykh funktsii v kvantovoi statisticheskoi fizike”, UFN, 161:11 (1991), 47–92 | DOI | DOI
[9] D. Pains, Problema mnogikh tel, IL, M., 1963