Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 147-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-stage process consisting of two continuous Berezinskii–Kosterlitz–Thouless-type transitions with an intermediate anisotropic liquid, a hexatic phase, is a well-known scenario of melting in two-dimensional systems. A direct first-order transition, similar to melting in three-dimensional systems, is another scenario variant. We prove the possibility in principle of the existence of a third scenario according to which melting occurs via two transitions, but in contrast to predictions of the Berezinskii–Kosterlitz–Thouless theory, the transition from an isotropic liquid to a hexatic phase is a first-order transition. Such a scenario was recently observed in a computer simulation of two-dimensional systems and then in a real experiment. Our proof is based on an analysis of branching solutions of an exact closed nonlinear integral equation for a two-particle conditional distribution function.
Keywords: melting in two-dimensional systems, density functional method.
Mots-clés : hexatic phase
@article{TMF_2019_200_1_a8,
     author = {V. N. Ryzhov and E. E. Tareeva},
     title = {Possible scenarios of a~phase transition from isotropic liquid to a~hexatic phase in the~theory of melting in two-dimensional systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {147--157},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a8/}
}
TY  - JOUR
AU  - V. N. Ryzhov
AU  - E. E. Tareeva
TI  - Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 147
EP  - 157
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a8/
LA  - ru
ID  - TMF_2019_200_1_a8
ER  - 
%0 Journal Article
%A V. N. Ryzhov
%A E. E. Tareeva
%T Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 147-157
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a8/
%G ru
%F TMF_2019_200_1_a8
V. N. Ryzhov; E. E. Tareeva. Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a8/

[1] K. J. Strandburg (ed.), Bond-Orientational Order in Condensed Matter Systems, Springer, New York, 1992 | DOI

[2] W. F. Brinkman, D. S. Fisher, D. E. Moncton, “Melting of two-dimensional solids”, Science, 217:4561 (1982), 693–700 | DOI

[3] K. J. Strandburg, “Two-dimensional melting”, Rev. Modern Phys., 60:1 (1988), 161–207 | DOI

[4] H. Kleinert, Gauge Fields in Condensed Matter, v. 2, Stresses and Defects. Differential Geometry, Crystal Melting, World Sci., Singapore, 1989 | MR | Zbl

[5] M. A. Glaser, N. A. Clark, “Melting and liquid structure in two dimensions”, Advances in Chemical Physics, v. 83, eds. I. Prigogine, S. A. Rice, John Wiley and Sons, New York, 1993, 543–709 | DOI

[6] V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, “Perekhod Berezinskogo–Kosterlitsa–Taulesa i dvumernoe plavlenie”, UFN, 187:9 (2017), 921–951 | DOI | DOI

[7] B. I. Halperin, D. R. Nelson, “Theory of two-dimensional melting”, Phys. Rev. Lett., 41:2 (1978), 121–124 | DOI | MR

[8] D. R. Nelson, B. I. Halperin, “Dislocation-mediated melting in two dimensions”, Phys. Rev. B, 19:5 (1979), 2457–2484 | DOI

[9] A. P. Young, “Melting and the vector Coulomb gas in two dimensions”, Phys. Rev. B, 19:4 (1979), 1855–1866 | DOI

[10] V. L. Berezinskii, “Razrushenie dalnego poryadka v odnomernykh i dvumernykh sistemakh s nepreryvnoi gruppoi simmetrii. I. Klassicheskie sistemy”, ZhETF, 59:3 (1971), 907–920 | MR

[11] V. L. Berezinskii, “Razrushenie dalnego poryadka v odnomernykh i dvumernykh sistemakh s nepreryvnoi gruppoi simmetrii. II. Kvantovye sistemy”, ZhETF, 61:3 (1971), 1144–1156

[12] J. M. Kosterlitz, D. J. Thouless, “Ordering, metastability and phase transitions in two-dimensional systems”, J. Phys. C, 6:7 (1973), 1181–1203 | DOI

[13] N. N. Bogolyubov, “Kvazisrednie v zadachakh statisticheskoi mekhaniki”, Sobranie nauchnykh trudov. Ctatisticheskaya mekhanika, v. 6, Ravnovesnaya statisticheskaya mekhanika: 1945–1986, Nauka, M., 2006, 236–360 | MR | Zbl

[14] N. D. Mermin, “Crystalline order in two dimensions”, Phys. Rev., 176:1 (1968), 250–254 ; Erratum Phys. Rev. B, 20:11 (1979), 4762–4762 ; 74:14 (2006), 149902, 1 pp. | DOI | DOI | DOI

[15] V. N. Ryzhov, “Statisticheskaya teoriya kristallizatsii v klassicheskikh sistemakh”, TMF, 55:1 (1983), 128–136 | DOI | MR

[16] V. N. Ryzhov, E. E. Tareeva, “Towards a statistical theory of freezing”, Phys. Lett. A, 75:1–2 (1979), 88–90 | DOI

[17] V. N. Ryzhov, E. E. Tareeva, “K statisticheskoi teorii kristallizatsii v sisteme tverdykh sfer”, TMF, 48:3 (1981), 416–423 | DOI | MR

[18] M. Baus, “The present status of the density-functional theory of the liquid-solid transition”, J. Phys.: Condens. Matter, 2:9 (1990), 2111–2126 | DOI

[19] Y. Singh, “Density-functional theory of freezing and properties of the ordered phase”, Phys. Rep., 207:6 (1991), 351–444 | DOI

[20] V. N. Ryzhov, E. E. Tareyeva, “Two-stage melting in two dimensions: first-principles approach”, Phys. Rev. B, 51:14 (1995), 8789–8794 | DOI

[21] V. N. Ryzhov, E. E. Tareeva, “Mikroskopicheskoe opisanie dvukhstadiinogo plavleniya v dvukh izmereniyakh”, ZhETF, 108:6 (1995), 2044–2060

[22] V. N. Ryzhov, E. E. Tareyeva, “Melting in two dimensions: first-order versus continuous transition”, Phys. A, 314:1–4 (2002), 396–404 | DOI

[23] L. M. Pomirchi, V. N. Ryzhov, E. E. Tareeva, “Plavlenie dvumernykh sistem: zavisimost roda perekhoda ot radiusa potentsiala”, TMF, 130:1 (2002), 119–130 | DOI | DOI | Zbl

[24] E. S. Chumakov, Y. D. Fomin, E. L. Shangina, E. E. Tareyeva, E. N. Tsiok, V. N. Ryzhov, “Phase diagram of the system with the repulsive shoulder potential in two dimensions: density functional approach”, Phys. A, 432 (2015), 279–286, arXiv: 1412.0466 | DOI | MR

[25] V. N. Ryzhov, E. E. Tareeva, “Mikroskopicheskii podkhod k vychisleniyu modulei uprugosti i modulya Franka v teorii dvumernogo plavleniya”, TMF, 92:2 (1992), 331–343 | DOI | MR

[26] E. P. Bernard, W. Krauth, “Two-step melting in two dimensions: first-order liquid-hexatic transition”, Phys. Rev. Lett., 107:15 (2011), 155704, 4 pp., arXiv: 1102.4094 | DOI

[27] M. Engel, J. A. Anderson, S. C. Glotzer, M. Isobe, E. P. Bernard, W. Krauth, “Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods”, Phys. Rev. E, 87:4 (2013), 042134, 8 pp., arXiv: 1211.1645 | DOI

[28] W. Qi, M. Dijkstra, “Destabilisation of the hexatic phase in systems of hard disks by quenched disorder due to pinning on a lattice”, Soft Matter, 11:14 (2015), 2852–2856 | DOI

[29] S. C. Kapfer, W. Krauth, “Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions”, Phys. Rev. Lett., 114:3 (2015), 035702, 5 pp., arXiv: 1406.7224 | DOI

[30] W. Qi, A. P. Gantapara, M. Dijkstra, “Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres”, Soft Matter, 10:30 (2014), 5449–5457, arXiv: 1307.1311 | DOI

[31] W.-K. Qi, S.-M. Qin, X.-Y. Zhao, Y. Chen, “Coexistence of hexatic and isotropic phases in two-dimensional Yukawa systems”, J. Phys.: Condens. Matter, 20:24 (2008), 245102, 9 pp. | DOI

[32] A. L. Thorneywork, J. L. Abbott, D. G. A. L. Aarts, R. P. A. Dullens, “Two-dimensional melting of colloidal hard spheres”, Phys. Rev. Lett., 118:15 (2017), 158001, 5 pp. | DOI

[33] E. A. Gaiduk, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, The influence of random pinning on the melting scenario of two-dimensional soft-disk systems, arXiv: 1812.02007

[34] Yu. D. Fomin, E. A. Gaiduk, E. N. Tsiok, V. N. Ryzhov, “The phase diagram and melting scenarios of two-dimensional Hertzian spheres”, Molecular Phys., 116:21–22 (2018), 3258–3270, arXiv: 1801.10029 | DOI

[35] E. N. Tsiok, D. E. Dudalov, Yu. D. Fomin, V. N. Ryzhov, “Random pinning changes the melting scenario of a two-dimensional core-softened potential system”, Phys. Rev. E, 92:3 (2015), 032110, 5 pp., arXiv: 1507.01802 | DOI

[36] E. N. Tsiok, Y. D. Fomin, V. N. Ryzhov, “Random pinning elucidates the nature of melting transition in two-dimensional core-softened potential system”, Phys. A, 490 (2018), 819–827, arXiv: 1701.03643 | DOI

[37] N. P. Kryuchkov, S. O. Yurchenko, Y. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Complex crystalline structures in a two-dimensional core-softened system”, Soft Matter, 14:11 (2018), 2152–2162, arXiv: 1712.04707 | DOI

[38] S. T. Chui, “Grain-boundary theory of melting in two dimensions”, Phys. Rev. B, 28:1 (1983), 178–194 | DOI

[39] V. N. Ryzhov, “Dislokatsionno-disklinatsionnoe plavlenie dvumernykh reshetok”, ZhETF, 100:5 (1991), 1627–1639

[40] V. N. Ryzhov, “Disklinatsionnoe plavlenie dvumernykh reshetok”, TMF, 88:3, 449–458 | DOI | MR

[41] V. N. Ryzhov, E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, E. S. Chumakov, “Renormgruppovoe issledovanie plavleniya dvumernoi sistemy kollapsiruyuschikh tverdykh diskov”, TMF, 191:3 (2017), 424–440 | DOI | DOI | MR

[42] V. N. Ryzhov, E. E. Tareeva, “Statisticheskaya mekhanika sistemy vikhrei v tonkoi sverkhprovodyaschei plenke v koltsevom priblizhenii”, TMF, 96:3 (1993), 425–437 | DOI | MR

[43] V. N. Ryzhov, E. E. Tareyeva, “Statistical mechanics of vortex systems in two-dimensional superconductors”, Phys. Rev. B, 48:17 (1993), 12907–12911 | DOI

[44] V. N. Ryzhov, E. E. Tareyeva, “Results for the phase diagram of the vortex system in two-dimensional superconductors”, Phys. Rev. B, 49:9 (1994), 6162–6173 | DOI

[45] D. Yu. Irz, V. N. Ryzhov, E. E. Tareyeva, “Vortex-vortex interaction in superconducting film of finite thickness”, Phys. Lett. A, 207:6 (1995), 374–378 | DOI

[46] D. Yu. Irz, V. N. Ryzhov, E. E. Tareeva, “Statisticheskaya mekhanika sistemy vikhrei v tonkoi sverkhprovodyaschei plenke v koltsevom priblizhenii. III. Uchet konechnogo razmera yadra vikhrya”, TMF, 107:1 (1996), 100–114 | DOI | DOI | MR | Zbl

[47] D. Yu. Irz, V. N. Ryzhov, E. E. Tareyeva, “First-order vortex unbinding transition in thin superconducting films”, Phys. Rev. B, 54:5 (1996), 3051–3054 | DOI

[48] V. N. Ryzhov, E. E. Tareeva, “Mikroskopicheskoe opisanie orientatsionnogo uporyadocheniya svyazei v prostykh zhidkostyakh”, TMF, 73:3 (1987), 463–474 | DOI | MR

[49] V. N. Ryzhov, E. E. Tareyeva, “Bond orientational order in simple liquids”, J. Phys. C, 21:5 (1988), 819–824 | DOI

[50] V. N. Ryzhov, “Orentatsionnoe uporyadochenie svyazei v prostykh trekhmernykh zhidkostyakh”, TMF, 80:1 (1989), 107–117 | DOI

[51] V. N. Ryzhov, “Local structure and bond orientational order in a Lennard-Jones liquid”, J. Phys.: Condens. Matter, 2:26 (1990), 5855–5865 | DOI

[52] R. Balesku, Ravnovesnaya i neravnovesnaya statisticheskaya mekhanika, Mir, M., 1978 | MR | MR | MR | Zbl

[53] N. N. Bogolyubov, Sobranie nauchnykh trudov. Ctatisticheskaya mekhanika, v. 6, Ravnovesnaya statisticheskaya mekhanika: 1945–1986, Nauka, M., 2006

[54] E. E. Tareyeva, V. N. Ryzhov, “Classical many-particle distribution functions: some new applications”, EChAYa, 31:7B (2000), 184–189