@article{TMF_2019_200_1_a7,
author = {T. S. Tinyukova and Yu. P. Chuburin},
title = {Majorana states near an impurity in {the~Kitayev} infinite and semi-infinite model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {137--146},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a7/}
}
TY - JOUR AU - T. S. Tinyukova AU - Yu. P. Chuburin TI - Majorana states near an impurity in the Kitayev infinite and semi-infinite model JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 137 EP - 146 VL - 200 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a7/ LA - ru ID - TMF_2019_200_1_a7 ER -
T. S. Tinyukova; Yu. P. Chuburin. Majorana states near an impurity in the Kitayev infinite and semi-infinite model. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 137-146. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a7/
[1] S. R. Elliot, M. Franz, “Colloquium: Majorana fermions in nuclear, particle, and solid-state physics”, Rev. Modern Phys., 87:1 (2015), 137–163, arXiv: 1403.4976 | DOI | MR
[2] J. Alicea, “New directions in the pursuit of Majorana fermions in solid state systems”, Rep. Prog. Phys., 75:7 (2012), 076501, 36 pp., arXiv: 1202.1293 | DOI
[3] M. Sato, S. Fujimoto, “Majorana fermions and topology in superconductors”, J. Phys. Soc. Japan, 85:7 (2016), 072001, 32 pp., arXiv: 1601.02726 | DOI
[4] S. Das Sarma, A. Nag, J. D. Sau, “How to infer non-Abelian statistics and topological visibility from tunneling conductance properties of realistic Majorana nanowires”, Phys. Rev. B, 94:3 (2016), 035143, 17 pp. | DOI
[5] A. Yu. Kitaev, “Unpaired Majorana fermions in quantum wires”, UFN, 171, dopolnenie k No 10 (2001), 131–136, arXiv: cond-mat/0010440 | DOI
[6] T. Karzig, G. Refael, F. von Oppen, “Boosting Majorana zero modes”, Phys. Rev. X, 3:4 (2013), 041017, 16 pp. | DOI
[7] S. Das Sarma, J. D. Sau, T. D. Stanescu, “Splitting of the zero-bias conductance peak as smoking gun evidence for the existence of the Majorana mode in a superconductor-semiconductor nanowire”, Phys. Rev. B, 86:22 (2012), 220506, 5 pp. | DOI
[8] Yu. P. Chuburin, “Existence of Majorana bound states near impurities in the case of a small superconducting gap”, Phys. E, 89 (2017), 130–133 | DOI
[9] Yu. P. Chuburin, “Suschestvovanie maioranovskikh lokalizovannykh sostoyanii v sverkhprovodyaschei nanoprovoloke vblizi primesi”, TMF, 197:2 (2018), 279–289 | DOI | DOI
[10] S.-J. Pablo, J. Cayao, E. Prada, R. Aguado, “Majorana bound states from exceptional points in non-topological superconductors”, Sci. Rep., 6 (2016), 21427, 13 pp. | DOI
[11] C. Moore, T. D. Stanescu, S. Tewari, “Two-terminal charge tunneling: disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor-superconductor heterostructures”, Phys. Rev. B, 97:16 (2018), 165302, 14 pp., arXiv: 1611.07058 | DOI
[12] C.-X. Liu, J. D. Sau, T. D. Stanescu, S. Das Sarma, “Andreev bound states versus Majorana bound states in quantum dot-nanowire-superconductor hybrid structures: trivial versus topological zero-bias conductance peaks”, Phys. Rev. B, 96:7 (2017), 075161, 29 pp., arXiv: 1705.02035 | DOI
[13] A. Vuik, B. Nijholt, A. R. Akhmerov, M. Wimmer, Reproducing topological properties with quasi-Majorana states, arXiv: 1806.02801
[14] M. A. Continentino, H. Caldas, D. Nozadze, N. Trivedi, “Topological states in normal and superconducting $p$-wave chains”, Phys. Lett. A, 378:45 (2014), 3340–3347 | DOI
[15] F. von Oppen, Ya. Peng, F. Pientka, “Topological Superconducting Phases in One Dimension”, Topological Aspects of Condensed Matter Physics, Lecture Notes of the Les Houches Summer School, 103, eds. C. Chamon, M. O. Goerbig, R. Moessner, L. F. Cugliandolo, Oxford Univ. Press, Oxford, 2017, 387–450 | DOI
[16] Hosho Katsura, Dirk Schuricht, Masahiro Takahashi, “Exact ground states and topological order in interacting Kitaev/Majorana chains”, Phys. Rev. B, 92:11 (2015), 115137, 12 pp. | DOI
[17] Yu. P. Chuburin, “Ob odnom diskretnom operatore Shredingera na grafe”, TMF, 165:1 (2010), 119–133 | DOI | DOI