Keywords: CAR algebra, Clifford algebra, spinor, Lorentz covariance, causality, charge operator.
@article{TMF_2019_200_1_a6,
author = {V. V. Monakhov},
title = {Generalization of {Dirac} conjugation in the~superalgebraic theory of spinors},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {118--136},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/}
}
V. V. Monakhov. Generalization of Dirac conjugation in the superalgebraic theory of spinors. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 118-136. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/
[1] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR
[2] V. L. Figueiredo, E. C. de Oliveira, W. A. Rodrigues, “Covariant, algebraic, and operator spinors”, Internat. J. Theoret. Phys., 29:4 (1990), 371–395 | DOI | MR
[3] W. A. Rodrigues, E. C. de Oliveira, “The hidden geometrical nature of spinors”, The Many Faces of Maxwell, Dirac and Einstein Equations, Lecture Notes in Physics, 922, eds. W. A. Rodrigues Jr., E. C. de Oliveira, Springer, Cham, 2016, 69–105 | DOI | MR
[4] E. Kartan, Teoriya spinorov, Platon, Volgograd, 1997
[5] R. Brauer, H. Weyl, “Spinors in $n$ dimensions”, Amer. J. Math., 57:2 (1935), 425–449 | DOI | MR
[6] J. A. Schouten, “On the geometry of spin spaces I”, Proc. Kon. Ned. Akad. Wetensch., 52:6 (1949), 597–609 ; “II”, 52:7 (1949), 687–695 ; “III”, 52:9 (1949), 938–948 ; “IV”, 53:3 (1950), 261–272 | MR | MR | MR | MR
[7] C. Chevalley, Algebraic Theory of Spinors and Clifford Algebras. Collected Works, v. 2, Springer, Berlin, 1997 | MR
[8] A. Zommerfeld, Stroenie atoma i spektry, v. 2, Gostekhizdat, M., 1956 | Zbl
[9] P. K. Rashevskii, “Teoriya spinorov”, UMN, 10:2(64) (1955), 3–110 | MR | Zbl
[10] D. S. Shirokov, “Clifford algebras and their applications to Lie groups and spinors”, Proceedings of the Nineteenth International Conference on Geometry, Integrability and Quantization (Varna, Bulgaria, June 02–07, 2017), eds. I. M. Mladenov, A. Yoshioka, Avangard Prima, Sofia, 2018, 11–53 | DOI | MR
[11] P. Lounesto, “Clifford algebras and Hestenes spinors”, Found. Phys., 23:9 (1993), 1203–1237 | DOI | MR
[12] J. H. Da Silva, R. da Rocha, “Unfolding physics from the algebraic classification of spinor fields”, Phys. Lett. B, 718:4–5 (2013), 1519–1523, arXiv: 1212.2406 | DOI | MR
[13] M. Pavšič, “Space inversion of spinors revisited: a possible explanation of chiral behavior in weak interactions”, Phys. Lett. B, 692:3 (2010), 212–217, arXiv: 1005.1500 | DOI | MR
[14] V. V. Monakhov, “Cuperalgebraicheskoe predstavlenie matrits Diraka”, TMF, 186:1 (2016), 87–100 | DOI | DOI | MR
[15] V. V. Monakhov, “Matritsy Diraka kak elementy superalgebraicheskoi matrichnoi algebry”, Izv. RAN. Ser. fiz., 80:8 (2016), 1074–1078 | DOI
[16] V. V. Monakhov, “Superalgebraic structure of Lorentz transformations”, J. Phys.: Conf. Ser., 1051:1 (2018), 012023, 13 pp. | DOI
[17] V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform”, Commun. Pure Appl. Math., 14:3 (1961), 187–214 | DOI | MR
[18] H. P. Thienel, “A generalization of the Bargmann-Fock representation to supersymmetry”, J. Phys. A: Math. Gen., 29:21 (1996), 6983–6989, arXiv: hep-th/9511155 | DOI | MR
[19] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo Mosk. un-ta, 1983 | MR
[20] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR
[21] V. S. Vladimirov, I. V. Volovich, “Superanaliz. I. Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl
[22] V. S. Vladimirov, I. V. Volovich, “Superanaliz. II. Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl
[23] I. A. Satikov, V. I. Strazhev, “O kvantovom opisanii polya Diraka–Kelera”, TMF, 73:1 (1987), 16–25 | DOI
[24] D. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, v. 2, Relyativistskie kvantovye polya, Nauka, M., 1978 | MR | MR