Generalization of Dirac conjugation in the superalgebraic theory of spinors
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 118-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the superalgebraic representation of spinors using Grassmann densities and the corresponding derivatives, we introduce a generalization of Dirac conjugation, and this generalization yields Lorentz-covariant transformations of conjugate spinors. The signature of the generalized gamma matrices, the number of them, and the decomposition of second quantization with respect to momenta are given by a variant of the generalized Dirac conjugation and by the requirement that the algebra of canonical anticommutation relations should be preserved under transformations of spinors and conjugate spinors.
Mots-clés : second quantization, Dirac matrix, Dirac conjugation, Lorentz transformation
Keywords: CAR algebra, Clifford algebra, spinor, Lorentz covariance, causality, charge operator.
@article{TMF_2019_200_1_a6,
     author = {V. V. Monakhov},
     title = {Generalization of {Dirac} conjugation in the~superalgebraic theory of spinors},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {118--136},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/}
}
TY  - JOUR
AU  - V. V. Monakhov
TI  - Generalization of Dirac conjugation in the superalgebraic theory of spinors
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 118
EP  - 136
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/
LA  - ru
ID  - TMF_2019_200_1_a6
ER  - 
%0 Journal Article
%A V. V. Monakhov
%T Generalization of Dirac conjugation in the superalgebraic theory of spinors
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 118-136
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/
%G ru
%F TMF_2019_200_1_a6
V. V. Monakhov. Generalization of Dirac conjugation in the superalgebraic theory of spinors. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 118-136. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a6/

[1] P. Lounesto, Clifford Algebras and Spinors, London Mathematical Society Lecture Note Series, 286, Cambridge Univ. Press, Cambridge, 2001 | DOI | MR

[2] V. L. Figueiredo, E. C. de Oliveira, W. A. Rodrigues, “Covariant, algebraic, and operator spinors”, Internat. J. Theoret. Phys., 29:4 (1990), 371–395 | DOI | MR

[3] W. A. Rodrigues, E. C. de Oliveira, “The hidden geometrical nature of spinors”, The Many Faces of Maxwell, Dirac and Einstein Equations, Lecture Notes in Physics, 922, eds. W. A. Rodrigues Jr., E. C. de Oliveira, Springer, Cham, 2016, 69–105 | DOI | MR

[4] E. Kartan, Teoriya spinorov, Platon, Volgograd, 1997

[5] R. Brauer, H. Weyl, “Spinors in $n$ dimensions”, Amer. J. Math., 57:2 (1935), 425–449 | DOI | MR

[6] J. A. Schouten, “On the geometry of spin spaces I”, Proc. Kon. Ned. Akad. Wetensch., 52:6 (1949), 597–609 ; “II”, 52:7 (1949), 687–695 ; “III”, 52:9 (1949), 938–948 ; “IV”, 53:3 (1950), 261–272 | MR | MR | MR | MR

[7] C. Chevalley, Algebraic Theory of Spinors and Clifford Algebras. Collected Works, v. 2, Springer, Berlin, 1997 | MR

[8] A. Zommerfeld, Stroenie atoma i spektry, v. 2, Gostekhizdat, M., 1956 | Zbl

[9] P. K. Rashevskii, “Teoriya spinorov”, UMN, 10:2(64) (1955), 3–110 | MR | Zbl

[10] D. S. Shirokov, “Clifford algebras and their applications to Lie groups and spinors”, Proceedings of the Nineteenth International Conference on Geometry, Integrability and Quantization (Varna, Bulgaria, June 02–07, 2017), eds. I. M. Mladenov, A. Yoshioka, Avangard Prima, Sofia, 2018, 11–53 | DOI | MR

[11] P. Lounesto, “Clifford algebras and Hestenes spinors”, Found. Phys., 23:9 (1993), 1203–1237 | DOI | MR

[12] J. H. Da Silva, R. da Rocha, “Unfolding physics from the algebraic classification of spinor fields”, Phys. Lett. B, 718:4–5 (2013), 1519–1523, arXiv: 1212.2406 | DOI | MR

[13] M. Pavšič, “Space inversion of spinors revisited: a possible explanation of chiral behavior in weak interactions”, Phys. Lett. B, 692:3 (2010), 212–217, arXiv: 1005.1500 | DOI | MR

[14] V. V. Monakhov, “Cuperalgebraicheskoe predstavlenie matrits Diraka”, TMF, 186:1 (2016), 87–100 | DOI | DOI | MR

[15] V. V. Monakhov, “Matritsy Diraka kak elementy superalgebraicheskoi matrichnoi algebry”, Izv. RAN. Ser. fiz., 80:8 (2016), 1074–1078 | DOI

[16] V. V. Monakhov, “Superalgebraic structure of Lorentz transformations”, J. Phys.: Conf. Ser., 1051:1 (2018), 012023, 13 pp. | DOI

[17] V. Bargmann, “On a Hilbert space of analytic functions and an associated integral transform”, Commun. Pure Appl. Math., 14:3 (1961), 187–214 | DOI | MR

[18] H. P. Thienel, “A generalization of the Bargmann-Fock representation to supersymmetry”, J. Phys. A: Math. Gen., 29:21 (1996), 6983–6989, arXiv: hep-th/9511155 | DOI | MR

[19] F. A. Berezin, Vvedenie v algebru i analiz s antikommutiruyuschimi peremennymi, Izd-vo Mosk. un-ta, 1983 | MR

[20] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1965 | MR

[21] V. S. Vladimirov, I. V. Volovich, “Superanaliz. I. Differentsialnoe ischislenie”, TMF, 59:1 (1984), 3–27 | DOI | MR | Zbl

[22] V. S. Vladimirov, I. V. Volovich, “Superanaliz. II. Integralnoe ischislenie”, TMF, 60:2 (1984), 169–198 | DOI | MR | Zbl

[23] I. A. Satikov, V. I. Strazhev, “O kvantovom opisanii polya Diraka–Kelera”, TMF, 73:1 (1987), 16–25 | DOI

[24] D. D. Berken, S. D. Drell, Relyativistskaya kvantovaya teoriya, v. 2, Relyativistskie kvantovye polya, Nauka, M., 1978 | MR | MR