Mots-clés : kernel
@article{TMF_2019_200_1_a5,
author = {Kh. A. Khachatryan},
title = {Solvability of some classes of nonlinear singular boundary value problems in the~theory of $p$-adic open{\textendash}closed strings},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {106--117},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a5/}
}
TY - JOUR AU - Kh. A. Khachatryan TI - Solvability of some classes of nonlinear singular boundary value problems in the theory of $p$-adic open–closed strings JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 106 EP - 117 VL - 200 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a5/ LA - ru ID - TMF_2019_200_1_a5 ER -
%0 Journal Article %A Kh. A. Khachatryan %T Solvability of some classes of nonlinear singular boundary value problems in the theory of $p$-adic open–closed strings %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 106-117 %V 200 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a5/ %G ru %F TMF_2019_200_1_a5
Kh. A. Khachatryan. Solvability of some classes of nonlinear singular boundary value problems in the theory of $p$-adic open–closed strings. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 106-117. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a5/
[1] I. Ya. Arefeva, B. G. Dragovic, I. V. Volovich, “Open and closed $p$-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR
[2] L. Brekke, P. G. O. Freund, “$p$-adic numbers in physics”, Phys. Rep., 233:1 (1993), 1–66 | DOI | MR
[3] V. S. Vladimirov, “O nelineinykh uravneniyakh $p$-adicheskikh otkrutykh, zamknutykh i otkryto-zamknutykh strun”, TMF, 149:3 (2006), 354–367 | DOI | DOI | MR | Zbl
[4] N. Moeller, M. Schnabl, “Tachyon condensation in open-closed $p$-adic string theory”, JHEP, 01 (2014), 011, 19 pp., arXiv: hep-th/0304213 | DOI
[5] I. Ya. Aref'eva, A. S. Koshelev, L. V. Joukovskaya, “Time evolution in superstring field theory on non-BPS brane. 1. Rolling tachyon and energy-momentum conservation”, JHEP, 09 (2003), 012, 15 pp., arXiv: hep-th/0301137 | MR
[6] K. Ohmori, “Toward an open-closed string theoretical description of a rolling tachyon”, Phys. Rev. D, 69:2 (2004), 026008, 5 pp., arXiv: hep-th/0306096 | DOI | MR
[7] L. Joukovskaya, Y. Volovich, Energy flow from open to closed strings in a toy model of rolling tachyon, arXiv: math-ph/0308034
[8] I. Ya. Arefeva, “Skatyvayuschiesya resheniya polevykh uravnenii na neekstremalnykh branakh i v $p$-adicheskikh strunakh”, Tr. MIAN, 245 (2004), 47–54 | MR | Zbl
[9] I. Ya. Arefeva, “Puzzles with tachyon in SSFT and cosmological applications”, Prog. Theor. Phys. Suppl., 188 (2011), 29–40, arXiv: 1101.5338 | DOI
[10] Kh. A. Khachatryan, “On solvability of one class of nonlinear integral equations on whole line with a weak singularity at zero”, $p$-Adic Num. Ultrametr. Anal. Appl., 9:4 (2017), 292–305 | DOI | MR
[11] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR | MR
[12] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR | Zbl
[13] L. G. Arabadzhyan, A. S. Khachatryan, “Ob odnom klasse integralnykh uravnenii tipa svertki”, Matem. sb., 198:7 (2007), 45–62 | DOI | DOI | MR | Zbl