Superposition of entangled coherent states: Physical realization and properties
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 96-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuous variable entangled states and especially entangled coherent states have attracted increasing interest in the field of quantum information processing. The characteristic features of the superposition of quantum states can be found in the literature. Because of these significant findings, we introduce and investigate a special superposition of multipartite entangled coherent states. We prove that the free-traveling optical field scheme can generate such a superposed state. Using a geometric measure of entanglement, we then investigate the correlation behavior of the superposed state.
Keywords: multipartite entangled coherent state, superposition of entangled coherent states, free-traveling optical field scheme, geometric measure of entanglement.
@article{TMF_2019_200_1_a4,
     author = {S. Miry},
     title = {Superposition of entangled coherent states: {Physical} realization and properties},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {96--105},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/}
}
TY  - JOUR
AU  - S. Miry
TI  - Superposition of entangled coherent states: Physical realization and properties
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 96
EP  - 105
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/
LA  - ru
ID  - TMF_2019_200_1_a4
ER  - 
%0 Journal Article
%A S. Miry
%T Superposition of entangled coherent states: Physical realization and properties
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 96-105
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/
%G ru
%F TMF_2019_200_1_a4
S. Miry. Superposition of entangled coherent states: Physical realization and properties. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 96-105. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/

[1] D. M. Greenberger, M. Horne, A. Zeilinger, “Going Beyond Bell's Theorem”, Bell's Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, 37, ed. M. Kafatos, Kluwer, Dordrecht, 1989, 69–72 | DOI

[2] W. Dur, G. Vidal, J. I. Cirac, “Three qubits can be entangled in two inequivalent ways”, Phys. Rev. A, 62:6 (2000), 062314, 12 pp., arXiv: quant-ph/0005115 | DOI | MR

[3] R. Raussendorf, H. J. Briegel, “A one-way quantum computer”, Phys. Rev. Lett., 86:22 (2001), 5188–5191 | DOI

[4] R. H. Dicke, “Coherence in spontaneous radiation processes”, Phys. Rev., 93:1 (1954), 99–110 | DOI

[5] X. Wang, B. C. Sanders, “Multipartite entangled coherent states”, Phys. Rev. A, 65:1 (2001), 012303, 7 pp., arXiv: quant-ph/0104011 | DOI | MR

[6] N. B. An, “Optimal processing of quantum information via $W$-type entangled coherent states”, Phys. Rev. A, 69:2 (2004), 022315, 9 pp. | DOI

[7] P. P. Munhoz, F. L. Semiao, A. Vidiella-Barranco, J. A. Roversi, “Cluster-type entangled coherent states”, Phys. Lett. A, 372:20 (2008), 3580–3585, arXiv: 0705.1549 | DOI | MR

[8] E. M. Becerra-Castro, W. B. Cardoso, A. T. Avelar, B. Baseia, “Generation of a 4-qubit cluster of entangled coherent states in bimodal QED cavities”, J. Phys. B, 41:8 (2008), 085505, 4 pp., arXiv: 0709.0010 | DOI

[9] N. B. An, J. Kim, “Cluster-type entangled coherent states: generation and application”, Phys. Rev. A, 80:4 (2009), 042316, 8 pp. | DOI

[10] X. Wang, “Quantum teleportation of entangled coherent states”, Phys. Rev. A, 64:2 (2001), 022302, 4 pp., arXiv: quant-ph/0102048 | DOI | MR

[11] H. Jeong, M. S. Kim, “Efficient quantum computation using coherent states”, Phys. Rev. A, 65:4 (2002), 042305, 6 pp., arXiv: quant-ph/0109077 | DOI

[12] N. B. An, “Teleportation of coherent-state superpositions within a network”, Phys. Rev. A, 68:2 (2003), 022321, 6 pp. | DOI

[13] H. Prakash, N. Chandra, R. Prakash, Shivani, “Improving the teleportation of entangled coherent states”, Phys. Rev. A, 75:4 (2007), 044305, 4 pp. | DOI

[14] A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, P. K. Lam, “Tripartite quantum state sharing”, Phys. Rev. Lett., 92:17 (2004), 177903, 4 pp., arXiv: quant-ph/0311015 | DOI

[15] O. Abbasi, M. K. Tavassoly, “Superposition of two nonlinear coherent states out of phase and their nonclassical properties”, Opt. Commun., 282:18 (2009), 3737–3745, arXiv: 0907.0083 | DOI

[16] M. C. de Oliveira, W. J. Munro, “Quantum computation with mesoscopic superposition states”, Phys. Rev. A, 61:4 (2000), 042309, 9 pp., arXiv: quant-ph/0001018 | DOI

[17] S. J. van Enk, O. Hirota, “Entangled coherent states: teleportation and decoherence”, Phys. Rev. A, 64:2 (2001), 022313, 6 pp., arXiv: quant-ph/0012086 | DOI | MR

[18] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy, “Quantum computation with optical coherent states”, Phys. Rev. A, 68:4 (2003), 042319, 11 pp., arXiv: quant-ph/0306004 | DOI

[19] P. Marek, J. Fiurasek, “Elementary gates for quantum information with superposed coherent states”, Phys. Rev. A, 82:1 (2010), 014304, 4 pp., arXiv: 1006.3644 | DOI

[20] S. L. Braunstein, H. J. Kimble, “Dense coding for continuous variables”, Phys. Rev. A, 61:4 (2000), 042302, 4 pp., arXiv: quant-ph/9910010 | DOI | MR

[21] D. Das, S. Dogra, K. Dorai, Arvind, “Experimental construction of a $W$ superposition state and its equivalence to the Greenberger–Horne–Zeilinger state under local filtration”, Phys. Rev. A, 92:2 (2015), 022307, 7 pp., arXiv: 1504.04856 | DOI

[22] A. R. Usha Devi, Sudha, A. K. Rajagopal, “Majorana representation of symmetric multiqubit states”, Quant. Inf. Process, 11:3 (2012), 685–710 | DOI | MR

[23] F. Ozaydin, A. A. Altintas, S. Bugu, C. Yesilyurt, “Quantum Fisher information of $N$ particles in the superposition of $W$ and GHZ states”, Internat. J. Theor. Phys., 52:9 (2013), 2977–2980 | DOI | MR

[24] L. Tang, F. Liu, “Generation of multipartite entangled coherent states via a superconducting charge qubit”, Phys. Lett. A, 378:30–31 (2014), 2074–2078 | DOI

[25] N. Behzadi, B. Ahansaz, S. Kazemi, “Constructing robust entangled coherent GHZ and W states via a cavity QED system”, Internat. J. Theor. Phys., 55:3 (2016), 1577–1592 | DOI

[26] L.-M. Kuang, L. Zhou, “Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency”, Phys. Rev. A, 68:4 (2003), 043606, 9 pp., arXiv: quant-ph/0402031 | DOI

[27] L.-M. Kuang, Z.-B. Chen, J.-W. Pan, “Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency”, Phys. Rev. A, 76:5 (2007), 052324, 14 pp., arXiv: 0903.1210 | DOI

[28] H. Jeong, N. B. An, “Greenberger–Horne–Zeilinger-type and $W$-type entangled coherent states: generation and Bell-type inequality tests without photon counting”, Phys. Rev. A, 74:2 (2006), 022104, 8 pp., arXiv: quant-ph/0606109 | DOI | MR

[29] Y. Guo, L.-M. Kuang, “Near-deterministic generation of four-mode $W$-type entangled coherent states”, J. Phys. B, 40:16 (2007), 3309–3318 | DOI

[30] Y. Guo, L.-M. Kuang, “Generation of three-mode $W$-type entangled coherent states in free-travelling optical fields”, Chinese Opt. Lett., 6:4 (2008), 303–306 | DOI

[31] H. Ollivier, W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp., arXiv: quant-ph/0105072 | DOI

[32] S. Luo, S. Fu, “Measurement-induced nonlocality”, Phys. Rev. Lett., 106:12 (2011), 120401, 4 pp. | DOI

[33] R. Hubener, M. Kleinmann, T.-C. Wei, C. Gonzalez-Guillen, O. Guhne, “Geometric measure of entanglement for symmetric states”, Phys. Rev. A, 80:3 (2009), 032324, 5 pp., arXiv: 0905.4822 | DOI | MR

[34] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire”, Nature Photonics, 4:1 (2010), 174–177 | DOI

[35] C. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge Univ. Press, Cambridge, 2005 | DOI

[36] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms”, Nature, 488:7409 (2012), 57–60 | DOI

[37] J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Grangier, “Dispersive optical nonlinearities in a Rydberg electromagnetically-induced-transparency medium”, Phys. Rev. A, 88:5 (2013), 053845, 9 pp. | DOI

[38] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletić, “Attractive photons in a quantum nonlinear medium”, Nature, 502:7469 (2013), 71–75 | DOI

[39] Z. Bai, G. Huang, “Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg–Rydberg interaction”, Opt. Express, 24:5 (2016), 4442–4461, arXiv: 1604.00585 | DOI

[40] L. S. Costanzo, A. S. Coelho, N. Biagi, J. Fiuášek, M. Bellini, A. Zavatta, “Measurement-induced strong Kerr nonlinearity for weak quantum states of light”, Phys. Rev. Lett., 119:1 (2017), 013601, 6 pp., arXiv: 1706.07018 | DOI

[41] H. Qian, Y. Xiao, Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect”, Nature Commun., 7 (2016), 13153, 6 pp. | DOI

[42] M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, S. Montangero, “Room-temperature Rydberg single-photon source”, Phys. Rev. A, 87:5 (2013), 053412, 5 pp., arXiv: 1212.2811 | DOI

[43] M. Khazali, K. Heshami, C. Simon, “Single-photon source based on Rydberg exciton blockade”, J. Phys. B, 50:21 (2017), 215301, 6 pp., arXiv: 1702.01213 | DOI

[44] P. Parashar, S. Rana, “Entanglement and discord of the superposition of Greenberger–Horne–Zeilinger states”, Phys. Rev. A, 83:4 (2011), 032301, 7 pp. | DOI