@article{TMF_2019_200_1_a4,
author = {S. Miry},
title = {Superposition of entangled coherent states: {Physical} realization and properties},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {96--105},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/}
}
S. Miry. Superposition of entangled coherent states: Physical realization and properties. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 96-105. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a4/
[1] D. M. Greenberger, M. Horne, A. Zeilinger, “Going Beyond Bell's Theorem”, Bell's Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, 37, ed. M. Kafatos, Kluwer, Dordrecht, 1989, 69–72 | DOI
[2] W. Dur, G. Vidal, J. I. Cirac, “Three qubits can be entangled in two inequivalent ways”, Phys. Rev. A, 62:6 (2000), 062314, 12 pp., arXiv: quant-ph/0005115 | DOI | MR
[3] R. Raussendorf, H. J. Briegel, “A one-way quantum computer”, Phys. Rev. Lett., 86:22 (2001), 5188–5191 | DOI
[4] R. H. Dicke, “Coherence in spontaneous radiation processes”, Phys. Rev., 93:1 (1954), 99–110 | DOI
[5] X. Wang, B. C. Sanders, “Multipartite entangled coherent states”, Phys. Rev. A, 65:1 (2001), 012303, 7 pp., arXiv: quant-ph/0104011 | DOI | MR
[6] N. B. An, “Optimal processing of quantum information via $W$-type entangled coherent states”, Phys. Rev. A, 69:2 (2004), 022315, 9 pp. | DOI
[7] P. P. Munhoz, F. L. Semiao, A. Vidiella-Barranco, J. A. Roversi, “Cluster-type entangled coherent states”, Phys. Lett. A, 372:20 (2008), 3580–3585, arXiv: 0705.1549 | DOI | MR
[8] E. M. Becerra-Castro, W. B. Cardoso, A. T. Avelar, B. Baseia, “Generation of a 4-qubit cluster of entangled coherent states in bimodal QED cavities”, J. Phys. B, 41:8 (2008), 085505, 4 pp., arXiv: 0709.0010 | DOI
[9] N. B. An, J. Kim, “Cluster-type entangled coherent states: generation and application”, Phys. Rev. A, 80:4 (2009), 042316, 8 pp. | DOI
[10] X. Wang, “Quantum teleportation of entangled coherent states”, Phys. Rev. A, 64:2 (2001), 022302, 4 pp., arXiv: quant-ph/0102048 | DOI | MR
[11] H. Jeong, M. S. Kim, “Efficient quantum computation using coherent states”, Phys. Rev. A, 65:4 (2002), 042305, 6 pp., arXiv: quant-ph/0109077 | DOI
[12] N. B. An, “Teleportation of coherent-state superpositions within a network”, Phys. Rev. A, 68:2 (2003), 022321, 6 pp. | DOI
[13] H. Prakash, N. Chandra, R. Prakash, Shivani, “Improving the teleportation of entangled coherent states”, Phys. Rev. A, 75:4 (2007), 044305, 4 pp. | DOI
[14] A. M. Lance, T. Symul, W. P. Bowen, B. C. Sanders, P. K. Lam, “Tripartite quantum state sharing”, Phys. Rev. Lett., 92:17 (2004), 177903, 4 pp., arXiv: quant-ph/0311015 | DOI
[15] O. Abbasi, M. K. Tavassoly, “Superposition of two nonlinear coherent states out of phase and their nonclassical properties”, Opt. Commun., 282:18 (2009), 3737–3745, arXiv: 0907.0083 | DOI
[16] M. C. de Oliveira, W. J. Munro, “Quantum computation with mesoscopic superposition states”, Phys. Rev. A, 61:4 (2000), 042309, 9 pp., arXiv: quant-ph/0001018 | DOI
[17] S. J. van Enk, O. Hirota, “Entangled coherent states: teleportation and decoherence”, Phys. Rev. A, 64:2 (2001), 022313, 6 pp., arXiv: quant-ph/0012086 | DOI | MR
[18] T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, S. Glancy, “Quantum computation with optical coherent states”, Phys. Rev. A, 68:4 (2003), 042319, 11 pp., arXiv: quant-ph/0306004 | DOI
[19] P. Marek, J. Fiurasek, “Elementary gates for quantum information with superposed coherent states”, Phys. Rev. A, 82:1 (2010), 014304, 4 pp., arXiv: 1006.3644 | DOI
[20] S. L. Braunstein, H. J. Kimble, “Dense coding for continuous variables”, Phys. Rev. A, 61:4 (2000), 042302, 4 pp., arXiv: quant-ph/9910010 | DOI | MR
[21] D. Das, S. Dogra, K. Dorai, Arvind, “Experimental construction of a $W$ superposition state and its equivalence to the Greenberger–Horne–Zeilinger state under local filtration”, Phys. Rev. A, 92:2 (2015), 022307, 7 pp., arXiv: 1504.04856 | DOI
[22] A. R. Usha Devi, Sudha, A. K. Rajagopal, “Majorana representation of symmetric multiqubit states”, Quant. Inf. Process, 11:3 (2012), 685–710 | DOI | MR
[23] F. Ozaydin, A. A. Altintas, S. Bugu, C. Yesilyurt, “Quantum Fisher information of $N$ particles in the superposition of $W$ and GHZ states”, Internat. J. Theor. Phys., 52:9 (2013), 2977–2980 | DOI | MR
[24] L. Tang, F. Liu, “Generation of multipartite entangled coherent states via a superconducting charge qubit”, Phys. Lett. A, 378:30–31 (2014), 2074–2078 | DOI
[25] N. Behzadi, B. Ahansaz, S. Kazemi, “Constructing robust entangled coherent GHZ and W states via a cavity QED system”, Internat. J. Theor. Phys., 55:3 (2016), 1577–1592 | DOI
[26] L.-M. Kuang, L. Zhou, “Generation of atom-photon entangled states in atomic Bose–Einstein condensate via electromagnetically induced transparency”, Phys. Rev. A, 68:4 (2003), 043606, 9 pp., arXiv: quant-ph/0402031 | DOI
[27] L.-M. Kuang, Z.-B. Chen, J.-W. Pan, “Generation of entangled coherent states for distant Bose–Einstein condensates via electromagnetically induced transparency”, Phys. Rev. A, 76:5 (2007), 052324, 14 pp., arXiv: 0903.1210 | DOI
[28] H. Jeong, N. B. An, “Greenberger–Horne–Zeilinger-type and $W$-type entangled coherent states: generation and Bell-type inequality tests without photon counting”, Phys. Rev. A, 74:2 (2006), 022104, 8 pp., arXiv: quant-ph/0606109 | DOI | MR
[29] Y. Guo, L.-M. Kuang, “Near-deterministic generation of four-mode $W$-type entangled coherent states”, J. Phys. B, 40:16 (2007), 3309–3318 | DOI
[30] Y. Guo, L.-M. Kuang, “Generation of three-mode $W$-type entangled coherent states in free-travelling optical fields”, Chinese Opt. Lett., 6:4 (2008), 303–306 | DOI
[31] H. Ollivier, W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations”, Phys. Rev. Lett., 88:1 (2001), 017901, 4 pp., arXiv: quant-ph/0105072 | DOI
[32] S. Luo, S. Fu, “Measurement-induced nonlocality”, Phys. Rev. Lett., 106:12 (2011), 120401, 4 pp. | DOI
[33] R. Hubener, M. Kleinmann, T.-C. Wei, C. Gonzalez-Guillen, O. Guhne, “Geometric measure of entanglement for symmetric states”, Phys. Rev. A, 80:3 (2009), 032324, 5 pp., arXiv: 0905.4822 | DOI | MR
[34] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire”, Nature Photonics, 4:1 (2010), 174–177 | DOI
[35] C. C. Gerry, P. Knight, Introductory Quantum Optics, Cambridge Univ. Press, Cambridge, 2005 | DOI
[36] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletic, “Quantum nonlinear optics with single photons enabled by strongly interacting atoms”, Nature, 488:7409 (2012), 57–60 | DOI
[37] J. Stanojevic, V. Parigi, E. Bimbard, A. Ourjoumtsev, P. Grangier, “Dispersive optical nonlinearities in a Rydberg electromagnetically-induced-transparency medium”, Phys. Rev. A, 88:5 (2013), 053845, 9 pp. | DOI
[38] O. Firstenberg, T. Peyronel, Q.-Y. Liang, A. V. Gorshkov, M. D. Lukin, V. Vuletić, “Attractive photons in a quantum nonlinear medium”, Nature, 502:7469 (2013), 71–75 | DOI
[39] Z. Bai, G. Huang, “Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg–Rydberg interaction”, Opt. Express, 24:5 (2016), 4442–4461, arXiv: 1604.00585 | DOI
[40] L. S. Costanzo, A. S. Coelho, N. Biagi, J. Fiuášek, M. Bellini, A. Zavatta, “Measurement-induced strong Kerr nonlinearity for weak quantum states of light”, Phys. Rev. Lett., 119:1 (2017), 013601, 6 pp., arXiv: 1706.07018 | DOI
[41] H. Qian, Y. Xiao, Z. Liu, “Giant Kerr response of ultrathin gold films from quantum size effect”, Nature Commun., 7 (2016), 13153, 6 pp. | DOI
[42] M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, S. Montangero, “Room-temperature Rydberg single-photon source”, Phys. Rev. A, 87:5 (2013), 053412, 5 pp., arXiv: 1212.2811 | DOI
[43] M. Khazali, K. Heshami, C. Simon, “Single-photon source based on Rydberg exciton blockade”, J. Phys. B, 50:21 (2017), 215301, 6 pp., arXiv: 1702.01213 | DOI
[44] P. Parashar, S. Rana, “Entanglement and discord of the superposition of Greenberger–Horne–Zeilinger states”, Phys. Rev. A, 83:4 (2011), 032301, 7 pp. | DOI