An unusual series of autonomous discrete integrable equations on a square lattice
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 50-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an infinite series of autonomous discrete equations on a square lattice with hierarchies of autonomous generalized symmetries and conservation laws in both directions. Their orders in both directions are equal to $\kappa N$, where $\kappa$ is an arbitrary natural number and $N$ is the equation number in the series. Such a structure of hierarchies is new for discrete equations in the case $N>2$. The symmetries and conservation laws are constructed using the master symmetries, which are found directly together with generalized symmetries. Such a construction scheme is apparently new in the case of conservation laws. Another new point is that in one of the directions, we introduce the master symmetry time into the coefficients of the discrete equations. In the most interesting case $N=2$, we show that a second-order generalized symmetry is closely related to a relativistic Toda-type integrable equation. As far as we know, this property is very rare in the case of autonomous discrete equations.
Keywords: integrable system, quad equation, generalized symmetry, conservation law
Mots-clés : $L$–$A~$ pair.
@article{TMF_2019_200_1_a2,
     author = {R. N. Garifullin and R. I. Yamilov},
     title = {An~unusual series of autonomous discrete integrable equations on a~square lattice},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {50--71},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/}
}
TY  - JOUR
AU  - R. N. Garifullin
AU  - R. I. Yamilov
TI  - An unusual series of autonomous discrete integrable equations on a square lattice
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 50
EP  - 71
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/
LA  - ru
ID  - TMF_2019_200_1_a2
ER  - 
%0 Journal Article
%A R. N. Garifullin
%A R. I. Yamilov
%T An unusual series of autonomous discrete integrable equations on a square lattice
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 50-71
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/
%G ru
%F TMF_2019_200_1_a2
R. N. Garifullin; R. I. Yamilov. An unusual series of autonomous discrete integrable equations on a square lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 50-71. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/

[1] R. Hirota, S. Tsujimoto, “Conserved quantities of a class of nonlinear difference-difference equations”, J. Phys. Soc. Japan, 64:9 (1995), 3125–3127 | DOI | MR

[2] F. Nijhoff, H. Capel, “The discrete Korteweg-de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR

[3] D. Levi, R. I. Yamilov, “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42:45 (2009), 454012, 18 pp. | DOI | MR

[4] R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys.: Conf. Ser., 621:1 (2015), 012005, 18 pp. | DOI

[5] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201, 27 pp., arXiv: 1501.05435 | DOI | MR

[6] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR

[7] H. Zhang, G. Tu, W. Oevel, B. Fuchssteiner, “Symmetries, conserved quantities and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR

[8] I. T. Khabibullin, M. V. Yangubaeva, “Formalnaya diagonalizatsiya diskretnogo operatora Laksa i zakony sokhraneniya i simmetrii dinamicheskikh sistem”, TMF, 177:3 (2013), 441–467 | DOI | DOI | MR | Zbl

[9] W. Oevel, H. Zhang, B. Fuchssteiner, “Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems”, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR

[10] R. N. Garifullin, R. I. Yamilov, “Examples of Darboux integrable discrete equations possessing first integrals of an arbitrarily high minimal order”, Ufimsk. matem. zhurn., 4:3 (2012), 177–183 | MR

[11] R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonl. Math. Phys., 26:3 (2019), 333–357, arXiv: 1810.11184 | DOI

[12] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201, 27 pp., arXiv: 1610.07342 | DOI | MR

[13] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations II”, J. Phys. A: Math. Theor., 51:6 (2018), 065204, 16 pp., arXiv: 1708.02456 | DOI | MR

[14] D. Levi, R. I. Yamilov, “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A: Math. Theor., 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR

[15] R. N. Garifullin, E. V. Gudkova, I. T. Habibullin, “Method for searching higher symmetries for quad-graph equations”, J. Phys. A: Math. Theor., 44:32 (2011), 325202, 16 pp. | DOI | MR

[16] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp. | DOI | MR | Zbl

[17] R. I. Yamilov, “O klassifikatsii diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6(234) (1983), 155–156

[18] I. Yu. Cherdantsev, R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type”, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR

[19] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205, 23 pp. | DOI | MR

[20] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Diskretnoe uravnenie na kvadratnoi reshetke s nestandartnoi strukturoi vysshikh simmetrii”, TMF, 180:1 (2014), 17–34 | DOI | DOI | MR

[21] T. Tsuchida, “Integrable discretizations of derivative nonlinear Schrödinger equations”, J. Phys. A: Math. Gen., 35:36 (2002), 7827–7847, arXiv: nlin/0105053 | DOI | MR

[22] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl

[23] R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01, 12 pp. | DOI | MR

[24] V. E. Adler, “Integriruemye semitochechnye diskretnye uravneniya i evolyutsionnye tsepochki vtorogo poryadka”, TMF, 195:1 (2018), 27–43 | DOI | DOI