Mots-clés : $L$–$A~$ pair.
@article{TMF_2019_200_1_a2,
author = {R. N. Garifullin and R. I. Yamilov},
title = {An~unusual series of autonomous discrete integrable equations on a~square lattice},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {50--71},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/}
}
TY - JOUR AU - R. N. Garifullin AU - R. I. Yamilov TI - An unusual series of autonomous discrete integrable equations on a square lattice JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 50 EP - 71 VL - 200 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/ LA - ru ID - TMF_2019_200_1_a2 ER -
R. N. Garifullin; R. I. Yamilov. An unusual series of autonomous discrete integrable equations on a square lattice. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 50-71. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a2/
[1] R. Hirota, S. Tsujimoto, “Conserved quantities of a class of nonlinear difference-difference equations”, J. Phys. Soc. Japan, 64:9 (1995), 3125–3127 | DOI | MR
[2] F. Nijhoff, H. Capel, “The discrete Korteweg-de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR
[3] D. Levi, R. I. Yamilov, “The generalized symmetry method for discrete equations”, J. Phys. A: Math. Theor., 42:45 (2009), 454012, 18 pp. | DOI | MR
[4] R. N. Garifullin, R. I. Yamilov, “Integrable discrete nonautonomous quad-equations as Bäcklund auto-transformations for known Volterra and Toda type semidiscrete equations”, J. Phys.: Conf. Ser., 621:1 (2015), 012005, 18 pp. | DOI
[5] R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, J. Phys. A: Math. Theor., 48:23 (2015), 235201, 27 pp., arXiv: 1501.05435 | DOI | MR
[6] R. Yamilov, “Symmetries as integrability criteria for differential difference equations”, J. Phys. A: Math. Gen., 39:45 (2006), R541–R623 | DOI | MR
[7] H. Zhang, G. Tu, W. Oevel, B. Fuchssteiner, “Symmetries, conserved quantities and hierarchies for some lattice systems with soliton structure”, J. Math. Phys., 32:7 (1991), 1908–1918 | DOI | MR
[8] I. T. Khabibullin, M. V. Yangubaeva, “Formalnaya diagonalizatsiya diskretnogo operatora Laksa i zakony sokhraneniya i simmetrii dinamicheskikh sistem”, TMF, 177:3 (2013), 441–467 | DOI | DOI | MR | Zbl
[9] W. Oevel, H. Zhang, B. Fuchssteiner, “Mastersymmetries and multi-Hamiltonian formulations for some integrable lattice systems”, Progr. Theor. Phys., 81:2 (1989), 294–308 | DOI | MR
[10] R. N. Garifullin, R. I. Yamilov, “Examples of Darboux integrable discrete equations possessing first integrals of an arbitrarily high minimal order”, Ufimsk. matem. zhurn., 4:3 (2012), 177–183 | MR
[11] R. N. Garifullin, G. Gubbiotti, R. I. Yamilov, “Integrable discrete autonomous quad-equations admitting, as generalized symmetries, known five-point differential-difference equations”, J. Nonl. Math. Phys., 26:3 (2019), 333–357, arXiv: 1810.11184 | DOI
[12] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations”, J. Phys. A: Math. Theor., 50:12 (2017), 125201, 27 pp., arXiv: 1610.07342 | DOI | MR
[13] R. N. Garifullin, R. I. Yamilov, D. Levi, “Classification of five-point differential-difference equations II”, J. Phys. A: Math. Theor., 51:6 (2018), 065204, 16 pp., arXiv: 1708.02456 | DOI | MR
[14] D. Levi, R. I. Yamilov, “Generalized symmetry integrability test for discrete equations on the square lattice”, J. Phys. A: Math. Theor., 44:14 (2011), 145207, 22 pp., arXiv: 1011.0070 | DOI | MR
[15] R. N. Garifullin, E. V. Gudkova, I. T. Habibullin, “Method for searching higher symmetries for quad-graph equations”, J. Phys. A: Math. Theor., 44:32 (2011), 325202, 16 pp. | DOI | MR
[16] I. T. Habibullin, “Characteristic algebras of fully discrete hyperbolic type equations”, SIGMA, 1 (2005), 023, 9 pp. | DOI | MR | Zbl
[17] R. I. Yamilov, “O klassifikatsii diskretnykh evolyutsionnykh uravnenii”, UMN, 38:6(234) (1983), 155–156
[18] I. Yu. Cherdantsev, R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type”, Phys. D, 87:1–4 (1995), 140–144 | DOI | MR
[19] R. N. Garifullin, R. I. Yamilov, “Generalized symmetry classification of discrete equations of a class depending on twelve parameters”, J. Phys. A: Math. Theor., 45:34 (2012), 345205, 23 pp. | DOI | MR
[20] R. N. Garifullin, A. V. Mikhailov, R. I. Yamilov, “Diskretnoe uravnenie na kvadratnoi reshetke s nestandartnoi strukturoi vysshikh simmetrii”, TMF, 180:1 (2014), 17–34 | DOI | DOI | MR
[21] T. Tsuchida, “Integrable discretizations of derivative nonlinear Schrödinger equations”, J. Phys. A: Math. Gen., 35:36 (2002), 7827–7847, arXiv: nlin/0105053 | DOI | MR
[22] V. E. Adler, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k probleme integriruemosti”, TMF, 125:3 (2000), 355–424 | DOI | DOI | MR | Zbl
[23] R. N. Garifullin, R. I. Yamilov, D. Levi, “Non-invertible transformations of differential-difference equations”, J. Phys. A: Math. Theor., 49:37 (2016), 37LT01, 12 pp. | DOI | MR
[24] V. E. Adler, “Integriruemye semitochechnye diskretnye uravneniya i evolyutsionnye tsepochki vtorogo poryadka”, TMF, 195:1 (2018), 27–43 | DOI | DOI