Cut-and-join operators and Macdonald polynomials from the 3-Schur functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 19-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Schur polynomials admit a somewhat mysterious deformation to Macdonald and Kerov polynomials, which do not have a direct group theory interpretation but do preserve most of the important properties of Schur functions. Nevertheless, the family of Schur–Macdonald functions is not sufficiently large: for various applications today, we need their not-yet-known analogues labeled by plane partitions, i.e., three-dimensional Young diagrams. Recently, a concrete way to obtain this generalization was proposed, and miraculous coincidences were described, raising hopes that it can lead in the right direction. But even in that case, much work is needed to convert the idea of generalized 3-Schur functions into a justified and effectively working theory. In particular, we can expect that Macdonald functions $($and even all Kerov functions, given some luck$)$ enter this theory on an equal footing with ordinary Schur functions. In detail, we describe how this works for Macdonald polynomials when the vector-valued times, which are associated with plane partitions and are arguments of the 3-Schur functions, are projected onto the ordinary scalar times under nonzero angles that depend on the Macdonald parameters $q$ and $t$. We show that the cut-and-join operators smoothly interpolate between different limit cases. Most of the examples are restricted to level $2$.
Mots-clés : plane partition
Keywords: Macdonald polynomial.
@article{TMF_2019_200_1_a1,
     author = {A. Yu. Morozov},
     title = {Cut-and-join operators and {Macdonald} polynomials from {the~3-Schur} functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {19--49},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/}
}
TY  - JOUR
AU  - A. Yu. Morozov
TI  - Cut-and-join operators and Macdonald polynomials from the 3-Schur functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 19
EP  - 49
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/
LA  - ru
ID  - TMF_2019_200_1_a1
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%T Cut-and-join operators and Macdonald polynomials from the 3-Schur functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 19-49
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/
%G ru
%F TMF_2019_200_1_a1
A. Yu. Morozov. Cut-and-join operators and Macdonald polynomials from the 3-Schur functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 19-49. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/

[1] A. Yu. Morozov, “Teoriya strun – chto eto takoe?”, UFN, 162:8 (1992), 83–175 ; “Интегрируемость и матричные модели”, 164:1 (1994), 3–62, arXiv: ; A. Morozov, Matrix models as integrable systems, arXiv: ; A. Morozov, Challenges of matrix models, arXiv: ; A. Mironov, “2D gravity and matrix models I: 2D gravity”, Internat. J. Modern Phys. A, 9:25 (1994), 4355–4405, arXiv: ; А. Д. Миронов, “Матричные модели двумерной гравитации”, ЭЧАЯ, 33:5 (2002), 1050–1145, arXiv: hep-th/9303139hep-th/9502091hep-th/0502010hep-th/9312212hep-th/9409190 | DOI | DOI | DOI | MR

[2] A. Gorsky, I. M. Krichever, A. Marshakov, A. Mironov, A. Morozov, “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B, 355:3–4 (1995), 466–474 | DOI | MR | Zbl

[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two- dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 ; А. Б. Замолодчиков, Ал. Б. Замолодчиков, Конформная теория поля и критические явления в двумерных системах, МЦНМО, М., 2009; L. Alvarez-Gaumé, “Random surfaces, statistical mechanics and string theory”, Helv. Phys. Acta, 64:4 (1991), 359–526 ; P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Springer, New York, 1997 ; А. В. Маршаков, А. Д. Миронов, А. Ю. Морозов, “О комбинаторных разложениях конформных блоков”, ТМФ, 164:1 (2010), 3–27, arXiv: ; А. Д. Миронов, С. А. Миронов, А. Ю. Морозов, А. А. Морозов, “Вычисления в конформной теории, необходимые для проверки гипотезы Алдая–Гайотто–Тачикавы”, ТМФ, 165:3 (2010), 503–542, arXiv: 0907.39460908.2064 | DOI | MR | Zbl | MR | DOI | MR | DOI | DOI | DOI | Zbl

[4] N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 ; R. Flume, R. Poghossian, “An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential”, Internat. J. Modern Phys. A, 18:14 (2003), 2541–2563 ; N. Nekrasov, A. Okounkov, Seiberg–Witten theory and random partitions, arXiv: ; N. Nekrasov, S. Shadchin, “ABCD of instantons”, Commun. Math. Phys., 252:1–3 (2004), 359–391, arXiv: ; A. Mironov, A. Morozov, “The power of Nekrasov functions”, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: hep-th/0306238hep-th/04042250908.2190 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR

[5] L. F. Alday, D. Gaiotto, Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: ; N. Wyllard, “$A_{N-1}$ conformal Toda field theory correlation functions from conformal $\mathcal N=2$ SU$(N)$ quiver gauge theories”, JHEP, 11 (2009), 002, 22 pp., arXiv: ; A. Mironov, A. Morozov, “On AGT relation in the case of ${\mathrm U}(3)$”, Nucl. Phys. B, 825:1–2 (2010), 1–37, arXiv: 0906.32190907.21890908.2569 | DOI | MR | DOI | MR | DOI | MR

[6] Vl. S. Dotsenko, V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models”, Nucl. Phys. B, 240:3 (1984), 312–348 ; A. Marshakov, A. Mironov, A. Morozov, “Generalized matrix models as conformal field theories. Discrete case”, Phys. Lett. B, 265:1–2 (1991), 99–107 ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, S. Pakuliak, “Conformal matrix models as an alternative to conventional multi-matrix models”, Nucl. Phys. B, 404:3 (1993), 717–750, arXiv: ; R. Dijkgraaf, C. Vafa, Toda theories, matrix models, topological strings, and $N=2$ gauge systems, arXiv: ; H. Itoyama, K. Maruyoshi, T. Oota, “The quiver matrix model and 2d–4d conformal connection”, Prog. Theor. Phys., 123:6 (2010), 957–987, arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, “Matrix model conjecture for exact BS periods and Nekrasov functions”, JHEP, 02 (2010), 030, 26 pp., arXiv: ; “Conformal blocks as Dotsenko–Fateev integral discriminants”, Internat. J. Modern Phys. A, 25:16 (2010), 3173–3207, arXiv: ; “Towards a proof of AGT conjecture by methods of matrix models”, 27:01 (2012), 1230001, 32 pp., arXiv: ; “On the “Dotsenko–Fateev” representation of the toric conformal blocks”, J. Phys. A: Math. Theor., 44:8 (2011), 085401, 11 pp., arXiv: ; H. Itoyama, T. Oota, “Method of generating $q$-expansion coefficients for conformal block and $\mathscr N=2$ Nekrasov function by $\beta$-deformed matrix model”, Nucl. Phys. B, 838:3 (2010), 298–330, arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, A. Smirnov, “Proving AGT conjecture as HS duality: extension to five dimensions”, Nucl. Phys. B, 855:1 (2012), 128–151, arXiv: ; A. Morozov, Y. Zenkevich, “Decomposing Nekrasov decomposition”, JHEP, 02 (2016), 098, 44 pp., arXiv: ; A. Mironov, A. Morozov, “On determinant representation and integrability of Nekrasov functions”, Phys.Lett. B, 773 (2017), 34–46, arXiv: hep-th/92080440909.24530911.42440911.57211001.05631011.56291010.17341003.29291105.09481510.018961707.02443 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR

[7] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR | MR | Zbl

[8] J. Ding, K. Iohara, “Generalization and deformation of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41:2 (1997), 181–193, arXiv: ; K. Miki, “A $(q,y)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48:12 (2007), 123520, 35 pp. ; B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum continuous $\mathfrak{gl}_{\infty}$: Semi-infinite construction of representations”, Kyoto J. Math., 51:2 (2011), 337–364, arXiv: ; B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, S. Yanagida, “A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials”, J. Math. Phys., 50:9 (2009), 095215, 42 pp., arXiv: ; B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum continuous $\mathfrak{gl}_{\infty}$: Tensor products of Fock modules and $W_n$ characters”, Kyoto J. Math., 51:2 (2011), 365–392, arXiv: ; H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, S. Yanagida, Notes on Ding–Iohara algebra and AGT conjecture, arXiv: ; B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum toroidal $\mathfrak{gl}_1$ algebra: plan partitions”, Kyoto J. Math., 52:3 (2012), 621–659, arXiv: ; “Representations of quantum toroidal $\mathfrak{gl}_n$”, J. Algebra, 380 (2013), 78–108, arXiv: ; “Branching rules for quantum toroidal $\mathfrak{gl}(n)$”, Adv. Math., 300 (2016), 229–274, arXiv: ; “Quantum toroidal $\mathfrak{gl}_1$ and Bethe ansatz”, J. Phys. A, 48:24 (2015), 244001, 27 pp., arXiv: ; “Finite type modules and Bethe ansatz for quantum toroidal”, Commun. Math. Phys., 356:1 (2017), 285–327, arXiv: ; H. Awata, B. Feigin, J. Shiraishi, “Quantum algebraic approach to refined topological vertex”, JHEP, 03 (2012), 041, 34 pp., arXiv: ; H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models”, JHEP, 07 (2016), 103, 66 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Generalized Knizhnik–Zamolodchikov equation for Ding–Iohara–Miki algebra”, Phys. Rev. D, 96:2 (2017), 026021, 19 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, K. Suetake, Y. Zenkevich, “$(q,t)$-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces”, JHEP, 03 (2018), 192, 68 pp., arXiv: q-alg/96080021002.31000904.22911002.31131106.40881110.53101204.53781309.21471502.071941603.027651112.60741604.083661703.060841712.08016 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR

[9] A. Iqbal, C. Vafa, N. Nekrasov, A. Okounkov, “Quantum foam and topological strings”, JHEP, 04 (2008), 011, 47 pp., arXiv: ; J.-E. Bourgine, Y. Matsuo, H. Zhang, “Holomorphic field realization of $\mathrm{SH}^c$ and quantum geometry of quiver gauge theories”, JHEP, 04 (2016), 167, 38 pp., arXiv: ; T. Kimura, V. Pestun, “Quiver $W$-algebras”, Lett. Math. Phys., 108:6 (2018), 1351–1381, arXiv: ; “Quiver elliptic $W$-algebras”, Lett. Math. Phys., 108:6 (2018), 1383–1405, arXiv: ; “Fractional quiver $W$-algebras”, Lett. Math. Phys., 108:11 (2018), 2425–2451, arXiv: ; A. Mironov, A. Morozov, Y. Zenkevich, “Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings”, JHEP, 05 (2016), 121, 43 pp., arXiv: ; “Ding–Iohara–Miki symmetry of network matrix models”, Phys. Lett. B, 762:10 (2016), 196–208, arXiv: ; H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Toric Calabi–Yau threefolds as quantum integrable systems. R-matrix and RTT relations”, JHEP, 10 (2016), 047, 48 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Anomaly in $\mathcal{RTT}$ relation for DIM algebra and network matrix models”, Nucl. Phys. B, 918 (2017), 358–385, arXiv: ; J.-E. Bourgine, M. Fukuda, Y. Matsuo, R.-D. Zhu, “Reflection states in Ding–Iohara–Miki algebra and brane-web for D-type quiver”, JHEP, 12 (2017), 015, 26 pp., arXiv: ; F. Nieri, Y. Pan, M. Zabzine, “3d expansions of 5d instanton partition functions”, JHEP, 04 (2018), 092, 30 pp., arXiv: ; “Bootstrapping the $S^5$ partition function”, EPJ Web Conf., 191 (2018), 06005, 11 pp., arXiv: ; O. Foda, M. Manabe, “Macdonald topological vertices and brane condensates”, Nucl. Phys. B, 936 \ (2018), 448–471, arXiv: hep-th/03120221512.024921512.085331608.046511705.044101603.003041603.054671608.053511611.073041709.019541711.061501807.119001801.04943 | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR

[10] A. Morozov, “An analogue of Schur functions for the plane partitions”, Phys. Lett. B, 785 (2018), 175–183, arXiv: 1808.01059 | DOI

[11] A. Morozov, A. Smirnov, “Towards the proof of AGT relations with the help of the generalized Jack polynomials”, Lett. Math. Phys., 104:5 (2014), 585–612, arXiv: ; S. Mironov, A. Morozov, Y. Zenkevich, “Generalized Jack polynomials and the AGT relations for the $SU(3)$ group”, Письма в ЖЭТФ, 99:2 (2014), 115–119, arXiv: ; Y. Ohkubo, Existence and orthogonality of generalized Jack polynomials and its $q$-deformation, arXiv: ; Ya. Kononov, A. Morozov, “On factorization of generalized Macdonald polynomials”, Eur. Phys. J. C, 76:8 (2016), 424, 7 pp., arXiv: ; Y. Zenkevich, “Refined toric branes, surface operators and factorization of generalized Macdonald polynomials”, JHEP, 09 (2017), 70, 20 pp., arXiv: 1307.25761312.57321404.54011607.006151612.09570 | DOI | MR | Zbl | DOI | DOI | DOI | DOI | MR

[12] Y. Zenkevich, 3d field theory, plane partitions and triple Macdonald polynomials, arXiv: 1712.10300

[13] N. Nekrasov, Magnificent four, arXiv: ; N. Nekrasov, N. Piazzalunga, “Magnificent four with colors”, Commun. Math. Phys., 2019 (to appear) ; arXiv: 1712.081281808.05206 | DOI

[14] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Polnyi nabor operatorov razrezaniya i skleiki v teorii Gurvitsa–Kontsevicha”, TMF, 166:1 (2011), 3–27, arXiv: ; A. Mironov, A. Morozov, S. Natanzon, “Algebra of differential operators associated with Young diagrams”, J. Geom. Phys., 62:2 (2012), 148–155, arXiv: 0904.42271012.0433 | DOI | DOI | MR

[15] S. V. Kerov, “Funktsii Kholla–Littlvuda i ortogonalnye mnogochleny”, Funkts. analiz i ego pril., 25:1 (1991), 78–81 ; A. Mironov, A. Morozov, Kerov functions revisited, arXiv: 1811.01184 | MR | Zbl

[16] J. B. Geloun, R. Gurau, V. Rivasseau, “EPRL/FK group field theory”, Europhys. Lett., 92:6 (2010), 60008, 6 pp., arXiv: ; R. Gurau, V. Rivasseau, “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95:5 (2011), 50004, 5 pp., arXiv: ; V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, “Critical behavior of colored tensor models in the large $N$ limit”, Nucl. Phys. B, 853:1 (2011), 174–195, arXiv: ; V. Bonzom, R. Gurau, V. Rivasseau, “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85:8 (2012), 084037, 12 pp., arXiv: ; R. Gurau, “A generalization of the Virasoro algebra to arbitrary dimensions”, Nucl. Phys. B, 852:3 (2011), 592–614, arXiv: ; “The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders”, 865:1 (2012), 133–147, arXiv: ; “Quenched equals annealed at leading order in the colored SYK model”, Europhys. Lett., 119:3 (2017), 30003, 7 pp., arXiv: ; V. Bonzom, “Revisiting random tensor models at large $N$ via the Schwinger–Dyson equations”, JHEP, 03 (2013), 160, 24 pp., arXiv: ; “New $1/N$ expansions in random tensor models”, 06 (2013), 062, 24 pp., arXiv: ; E. Witten, An SYK-like model without disorder, arXiv: ; I. R. Klebanov, G. Tarnopolsky, “Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models”, Phys. Rev. D, 95:4 (2017), 046004, 13 pp., arXiv: ; S. Carrozza, A. Tanasa, “$O(N)$ random tensor models”, Lett. Math. Phys., 106:11 (2016), 1531–1559, arXiv: ; A. Jevicki, K. Suzuki, J. Yoon, “Bi-local holography in the SYK model”, JHEP, 07 (2016), 007, 24 pp., arXiv: ; H. Itoyama, A. Mironov, A. Morozov, “Rainbow tensor model with enhanced symmetry and extreme melonic dominance”, Phys. Lett. B, 771 (2017), 180–188, arXiv: ; S. R. Das, A. Jevicki, K. Suzuki, “Three dimensional view of the SYK/AdS duality”, JHEP, 09 (2017), 017, 19 pp., arXiv: ; K. Bulycheva, I. R. Klebanov, A. Milekhin, G. Tarnopolsky, “Spectra of operators in large $N$ tensor models”, Phys. Rev. D, 97:2 (2018), 026016, 19 pp., arXiv: ; P. Diaz, J. A. Rosabal, “Spontaneous symmetry breaking in tensor theories”, JHEP, 01 (2019), 094, 36 pp., arXiv: ; Chiral symmetry breaking generalizes in tensor theories, arXiv: 1008.03541101.41821105.31221202.36371105.60721203.49651702.042281208.62161211.16571610.097581611.089151512.067181603.062461703.049831704.072081707.093471809.101531810.02520 | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR | DOI

[17] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 ; V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Sci., Singapore, 2007, arXiv: ; А. Ю. Морозов, Ш. Р. Шакиров, “Новые и старые результаты в теории результантов”, ТМФ, 163:2 (2010), 222–257, arXiv: hep-th/06090220911.5278 | DOI | MR | DOI | MR | Zbl | DOI

[18] A. Mironov, A. Morozov, “Sum rules for characters from character-preservation property of matrix models”, JHEP, 08 (2018), 163, 27 pp., arXiv: ; “On the complete perturbative solution of one-matrix models”, Phys. Lett. B, 771 (2017), 503–507, arXiv: ; “Correlators in tensor models from character calculus”, 774 (2017), 210–216, arXiv: ; A. Morozov, A. Popolitov, Sh. Shakirov, “On $(q,t)$-deformation of Gaussian matrix model”, Phys. Lett. B, 784 (2018), 342–344, arXiv: ; H. Itoyama, A. Mironov, A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models”, Phys. Lett. B, 788 (2019), 76–81, arXiv: ; “Ward identities and combinatorics of rainbow tensor models”, JHEP, 06 (2017), 115, 66 pp., arXiv: ; “Cut and join operator ring in tensor models”, Nucl. Phys. B, 932 (2018), 52–118, arXiv: ; R. de Mello Koch, S. Ramgoolam, From matrix models and quantum fields to Hurwitz space and the absolute Galois group, arXiv: ; J. Ben Geloun, S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, arXiv: ; P. Diaz, S.-J. Rey, “Orthogonal bases of invariants in tensor models”, JHEP, 02 (2018), 089, 13 pp., arXiv: ; “Invariant operators, orthogonal bases and correlators in general tensor models”, Nucl. Phys. B, 932 (2018), 254–277, arXiv: ; R. de Mello Koch, D. Gossman, L. Tribelhorn, “Gauge invariants, correlators and holography in bosonic and fermionic tensor models”, JHEP, 09 (2017), 011, 28 pp., arXiv: ; J. Ben Geloun, S. Ramgoolam, “Tensor models, Kronecker coefficients and permutation centralizer algebras”, JHEP, 11 (2017), 092, 73 pp., arXiv: ; P. Diaz, “Tensor and matrix models: a one-night stand or a lifetime romance?”, JHEP, 06 (2018), 140, 18 pp., arXiv: 1807.024091705.009761706.036671803.114011808.077831704.086481710.100271002.16341307.64901706.026671801.105061707.014551708.035241803.04471 | DOI | MR | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR