Keywords: Macdonald polynomial.
@article{TMF_2019_200_1_a1,
author = {A. Yu. Morozov},
title = {Cut-and-join operators and {Macdonald} polynomials from {the~3-Schur} functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {19--49},
year = {2019},
volume = {200},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/}
}
A. Yu. Morozov. Cut-and-join operators and Macdonald polynomials from the 3-Schur functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 19-49. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a1/
[1] A. Yu. Morozov, “Teoriya strun – chto eto takoe?”, UFN, 162:8 (1992), 83–175 ; “Интегрируемость и матричные модели”, 164:1 (1994), 3–62, arXiv: ; A. Morozov, Matrix models as integrable systems, arXiv: ; A. Morozov, Challenges of matrix models, arXiv: ; A. Mironov, “2D gravity and matrix models I: 2D gravity”, Internat. J. Modern Phys. A, 9:25 (1994), 4355–4405, arXiv: ; А. Д. Миронов, “Матричные модели двумерной гравитации”, ЭЧАЯ, 33:5 (2002), 1050–1145, arXiv: hep-th/9303139hep-th/9502091hep-th/0502010hep-th/9312212hep-th/9409190 | DOI | DOI | DOI | MR
[2] A. Gorsky, I. M. Krichever, A. Marshakov, A. Mironov, A. Morozov, “Integrability and Seiberg–Witten exact solution”, Phys. Lett. B, 355:3–4 (1995), 466–474 | DOI | MR | Zbl
[3] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two- dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 ; А. Б. Замолодчиков, Ал. Б. Замолодчиков, Конформная теория поля и критические явления в двумерных системах, МЦНМО, М., 2009; L. Alvarez-Gaumé, “Random surfaces, statistical mechanics and string theory”, Helv. Phys. Acta, 64:4 (1991), 359–526 ; P. Di Francesco, P. Mathieu, D. Senechal, Conformal Field Theory, Springer, New York, 1997 ; А. В. Маршаков, А. Д. Миронов, А. Ю. Морозов, “О комбинаторных разложениях конформных блоков”, ТМФ, 164:1 (2010), 3–27, arXiv: ; А. Д. Миронов, С. А. Миронов, А. Ю. Морозов, А. А. Морозов, “Вычисления в конформной теории, необходимые для проверки гипотезы Алдая–Гайотто–Тачикавы”, ТМФ, 165:3 (2010), 503–542, arXiv: 0907.39460908.2064 | DOI | MR | Zbl | MR | DOI | MR | DOI | DOI | DOI | Zbl
[4] N. A. Nekrasov, “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7:5 (2003), 831–864 ; R. Flume, R. Poghossian, “An algorithm for the microscopic evaluation of the coefficients of the Seiberg–Witten prepotential”, Internat. J. Modern Phys. A, 18:14 (2003), 2541–2563 ; N. Nekrasov, A. Okounkov, Seiberg–Witten theory and random partitions, arXiv: ; N. Nekrasov, S. Shadchin, “ABCD of instantons”, Commun. Math. Phys., 252:1–3 (2004), 359–391, arXiv: ; A. Mironov, A. Morozov, “The power of Nekrasov functions”, Phys. Lett. B, 680:2 (2009), 188–194, arXiv: hep-th/0306238hep-th/04042250908.2190 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR
[5] L. F. Alday, D. Gaiotto, Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: ; N. Wyllard, “$A_{N-1}$ conformal Toda field theory correlation functions from conformal $\mathcal N=2$ SU$(N)$ quiver gauge theories”, JHEP, 11 (2009), 002, 22 pp., arXiv: ; A. Mironov, A. Morozov, “On AGT relation in the case of ${\mathrm U}(3)$”, Nucl. Phys. B, 825:1–2 (2010), 1–37, arXiv: 0906.32190907.21890908.2569 | DOI | MR | DOI | MR | DOI | MR
[6] Vl. S. Dotsenko, V. A. Fateev, “Conformal algebra and multipoint correlation functions in 2D statistical models”, Nucl. Phys. B, 240:3 (1984), 312–348 ; A. Marshakov, A. Mironov, A. Morozov, “Generalized matrix models as conformal field theories. Discrete case”, Phys. Lett. B, 265:1–2 (1991), 99–107 ; S. Kharchev, A. Marshakov, A. Mironov, A. Morozov, S. Pakuliak, “Conformal matrix models as an alternative to conventional multi-matrix models”, Nucl. Phys. B, 404:3 (1993), 717–750, arXiv: ; R. Dijkgraaf, C. Vafa, Toda theories, matrix models, topological strings, and $N=2$ gauge systems, arXiv: ; H. Itoyama, K. Maruyoshi, T. Oota, “The quiver matrix model and 2d–4d conformal connection”, Prog. Theor. Phys., 123:6 (2010), 957–987, arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, “Matrix model conjecture for exact BS periods and Nekrasov functions”, JHEP, 02 (2010), 030, 26 pp., arXiv: ; “Conformal blocks as Dotsenko–Fateev integral discriminants”, Internat. J. Modern Phys. A, 25:16 (2010), 3173–3207, arXiv: ; “Towards a proof of AGT conjecture by methods of matrix models”, 27:01 (2012), 1230001, 32 pp., arXiv: ; “On the “Dotsenko–Fateev” representation of the toric conformal blocks”, J. Phys. A: Math. Theor., 44:8 (2011), 085401, 11 pp., arXiv: ; H. Itoyama, T. Oota, “Method of generating $q$-expansion coefficients for conformal block and $\mathscr N=2$ Nekrasov function by $\beta$-deformed matrix model”, Nucl. Phys. B, 838:3 (2010), 298–330, arXiv: ; A. Mironov, A. Morozov, Sh. Shakirov, A. Smirnov, “Proving AGT conjecture as HS duality: extension to five dimensions”, Nucl. Phys. B, 855:1 (2012), 128–151, arXiv: ; A. Morozov, Y. Zenkevich, “Decomposing Nekrasov decomposition”, JHEP, 02 (2016), 098, 44 pp., arXiv: ; A. Mironov, A. Morozov, “On determinant representation and integrability of Nekrasov functions”, Phys.Lett. B, 773 (2017), 34–46, arXiv: hep-th/92080440909.24530911.42440911.57211001.05631011.56291010.17341003.29291105.09481510.018961707.02443 | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR
[7] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1984 | MR | MR | Zbl
[8] J. Ding, K. Iohara, “Generalization and deformation of Drinfeld quantum affine algebras”, Lett. Math. Phys., 41:2 (1997), 181–193, arXiv: ; K. Miki, “A $(q,y)$ analog of the $W_{1+\infty}$ algebra”, J. Math. Phys., 48:12 (2007), 123520, 35 pp. ; B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum continuous $\mathfrak{gl}_{\infty}$: Semi-infinite construction of representations”, Kyoto J. Math., 51:2 (2011), 337–364, arXiv: ; B. Feigin, K. Hashizume, A. Hoshino, J. Shiraishi, S. Yanagida, “A commutative algebra on degenerate $\mathbb{CP}^1$ and Macdonald polynomials”, J. Math. Phys., 50:9 (2009), 095215, 42 pp., arXiv: ; B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum continuous $\mathfrak{gl}_{\infty}$: Tensor products of Fock modules and $W_n$ characters”, Kyoto J. Math., 51:2 (2011), 365–392, arXiv: ; H. Awata, B. Feigin, A. Hoshino, M. Kanai, J. Shiraishi, S. Yanagida, Notes on Ding–Iohara algebra and AGT conjecture, arXiv: ; B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, “Quantum toroidal $\mathfrak{gl}_1$ algebra: plan partitions”, Kyoto J. Math., 52:3 (2012), 621–659, arXiv: ; “Representations of quantum toroidal $\mathfrak{gl}_n$”, J. Algebra, 380 (2013), 78–108, arXiv: ; “Branching rules for quantum toroidal $\mathfrak{gl}(n)$”, Adv. Math., 300 (2016), 229–274, arXiv: ; “Quantum toroidal $\mathfrak{gl}_1$ and Bethe ansatz”, J. Phys. A, 48:24 (2015), 244001, 27 pp., arXiv: ; “Finite type modules and Bethe ansatz for quantum toroidal”, Commun. Math. Phys., 356:1 (2017), 285–327, arXiv: ; H. Awata, B. Feigin, J. Shiraishi, “Quantum algebraic approach to refined topological vertex”, JHEP, 03 (2012), 041, 34 pp., arXiv: ; H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Explicit examples of DIM constraints for network matrix models”, JHEP, 07 (2016), 103, 66 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Generalized Knizhnik–Zamolodchikov equation for Ding–Iohara–Miki algebra”, Phys. Rev. D, 96:2 (2017), 026021, 19 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, K. Suetake, Y. Zenkevich, “$(q,t)$-KZ equations for quantum toroidal algebra and Nekrasov partition functions on ALE spaces”, JHEP, 03 (2018), 192, 68 pp., arXiv: q-alg/96080021002.31000904.22911002.31131106.40881110.53101204.53781309.21471502.071941603.027651112.60741604.083661703.060841712.08016 | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR
[9] A. Iqbal, C. Vafa, N. Nekrasov, A. Okounkov, “Quantum foam and topological strings”, JHEP, 04 (2008), 011, 47 pp., arXiv: ; J.-E. Bourgine, Y. Matsuo, H. Zhang, “Holomorphic field realization of $\mathrm{SH}^c$ and quantum geometry of quiver gauge theories”, JHEP, 04 (2016), 167, 38 pp., arXiv: ; T. Kimura, V. Pestun, “Quiver $W$-algebras”, Lett. Math. Phys., 108:6 (2018), 1351–1381, arXiv: ; “Quiver elliptic $W$-algebras”, Lett. Math. Phys., 108:6 (2018), 1383–1405, arXiv: ; “Fractional quiver $W$-algebras”, Lett. Math. Phys., 108:11 (2018), 2425–2451, arXiv: ; A. Mironov, A. Morozov, Y. Zenkevich, “Spectral duality in elliptic systems, six-dimensional gauge theories and topological strings”, JHEP, 05 (2016), 121, 43 pp., arXiv: ; “Ding–Iohara–Miki symmetry of network matrix models”, Phys. Lett. B, 762:10 (2016), 196–208, arXiv: ; H. Awata, H. Kanno, T. Matsumoto, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Toric Calabi–Yau threefolds as quantum integrable systems. R-matrix and RTT relations”, JHEP, 10 (2016), 047, 48 pp., arXiv: ; H. Awata, H. Kanno, A. Mironov, A. Morozov, A. Morozov, Y. Ohkubo, Y. Zenkevich, “Anomaly in $\mathcal{RTT}$ relation for DIM algebra and network matrix models”, Nucl. Phys. B, 918 (2017), 358–385, arXiv: ; J.-E. Bourgine, M. Fukuda, Y. Matsuo, R.-D. Zhu, “Reflection states in Ding–Iohara–Miki algebra and brane-web for D-type quiver”, JHEP, 12 (2017), 015, 26 pp., arXiv: ; F. Nieri, Y. Pan, M. Zabzine, “3d expansions of 5d instanton partition functions”, JHEP, 04 (2018), 092, 30 pp., arXiv: ; “Bootstrapping the $S^5$ partition function”, EPJ Web Conf., 191 (2018), 06005, 11 pp., arXiv: ; O. Foda, M. Manabe, “Macdonald topological vertices and brane condensates”, Nucl. Phys. B, 936 \ (2018), 448–471, arXiv: hep-th/03120221512.024921512.085331608.046511705.044101603.003041603.054671608.053511611.073041709.019541711.061501807.119001801.04943 | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR
[10] A. Morozov, “An analogue of Schur functions for the plane partitions”, Phys. Lett. B, 785 (2018), 175–183, arXiv: 1808.01059 | DOI
[11] A. Morozov, A. Smirnov, “Towards the proof of AGT relations with the help of the generalized Jack polynomials”, Lett. Math. Phys., 104:5 (2014), 585–612, arXiv: ; S. Mironov, A. Morozov, Y. Zenkevich, “Generalized Jack polynomials and the AGT relations for the $SU(3)$ group”, Письма в ЖЭТФ, 99:2 (2014), 115–119, arXiv: ; Y. Ohkubo, Existence and orthogonality of generalized Jack polynomials and its $q$-deformation, arXiv: ; Ya. Kononov, A. Morozov, “On factorization of generalized Macdonald polynomials”, Eur. Phys. J. C, 76:8 (2016), 424, 7 pp., arXiv: ; Y. Zenkevich, “Refined toric branes, surface operators and factorization of generalized Macdonald polynomials”, JHEP, 09 (2017), 70, 20 pp., arXiv: 1307.25761312.57321404.54011607.006151612.09570 | DOI | MR | Zbl | DOI | DOI | DOI | DOI | MR
[12] Y. Zenkevich, 3d field theory, plane partitions and triple Macdonald polynomials, arXiv: 1712.10300
[13] N. Nekrasov, Magnificent four, arXiv: ; N. Nekrasov, N. Piazzalunga, “Magnificent four with colors”, Commun. Math. Phys., 2019 (to appear) ; arXiv: 1712.081281808.05206 | DOI
[14] A. D. Mironov, A. Yu. Morozov, S. M. Natanzon, “Polnyi nabor operatorov razrezaniya i skleiki v teorii Gurvitsa–Kontsevicha”, TMF, 166:1 (2011), 3–27, arXiv: ; A. Mironov, A. Morozov, S. Natanzon, “Algebra of differential operators associated with Young diagrams”, J. Geom. Phys., 62:2 (2012), 148–155, arXiv: 0904.42271012.0433 | DOI | DOI | MR
[15] S. V. Kerov, “Funktsii Kholla–Littlvuda i ortogonalnye mnogochleny”, Funkts. analiz i ego pril., 25:1 (1991), 78–81 ; A. Mironov, A. Morozov, Kerov functions revisited, arXiv: 1811.01184 | MR | Zbl
[16] J. B. Geloun, R. Gurau, V. Rivasseau, “EPRL/FK group field theory”, Europhys. Lett., 92:6 (2010), 60008, 6 pp., arXiv: ; R. Gurau, V. Rivasseau, “The $1/N$ expansion of colored tensor models in arbitrary dimension”, Europhys. Lett., 95:5 (2011), 50004, 5 pp., arXiv: ; V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, “Critical behavior of colored tensor models in the large $N$ limit”, Nucl. Phys. B, 853:1 (2011), 174–195, arXiv: ; V. Bonzom, R. Gurau, V. Rivasseau, “Random tensor models in the large $N$ limit: uncoloring the colored tensor models”, Phys. Rev. D, 85:8 (2012), 084037, 12 pp., arXiv: ; R. Gurau, “A generalization of the Virasoro algebra to arbitrary dimensions”, Nucl. Phys. B, 852:3 (2011), 592–614, arXiv: ; “The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders”, 865:1 (2012), 133–147, arXiv: ; “Quenched equals annealed at leading order in the colored SYK model”, Europhys. Lett., 119:3 (2017), 30003, 7 pp., arXiv: ; V. Bonzom, “Revisiting random tensor models at large $N$ via the Schwinger–Dyson equations”, JHEP, 03 (2013), 160, 24 pp., arXiv: ; “New $1/N$ expansions in random tensor models”, 06 (2013), 062, 24 pp., arXiv: ; E. Witten, An SYK-like model without disorder, arXiv: ; I. R. Klebanov, G. Tarnopolsky, “Uncolored random tensors, melon diagrams, and the Sachdev–Ye–Kitaev models”, Phys. Rev. D, 95:4 (2017), 046004, 13 pp., arXiv: ; S. Carrozza, A. Tanasa, “$O(N)$ random tensor models”, Lett. Math. Phys., 106:11 (2016), 1531–1559, arXiv: ; A. Jevicki, K. Suzuki, J. Yoon, “Bi-local holography in the SYK model”, JHEP, 07 (2016), 007, 24 pp., arXiv: ; H. Itoyama, A. Mironov, A. Morozov, “Rainbow tensor model with enhanced symmetry and extreme melonic dominance”, Phys. Lett. B, 771 (2017), 180–188, arXiv: ; S. R. Das, A. Jevicki, K. Suzuki, “Three dimensional view of the SYK/AdS duality”, JHEP, 09 (2017), 017, 19 pp., arXiv: ; K. Bulycheva, I. R. Klebanov, A. Milekhin, G. Tarnopolsky, “Spectra of operators in large $N$ tensor models”, Phys. Rev. D, 97:2 (2018), 026016, 19 pp., arXiv: ; P. Diaz, J. A. Rosabal, “Spontaneous symmetry breaking in tensor theories”, JHEP, 01 (2019), 094, 36 pp., arXiv: ; Chiral symmetry breaking generalizes in tensor theories, arXiv: 1008.03541101.41821105.31221202.36371105.60721203.49651702.042281208.62161211.16571610.097581611.089151512.067181603.062461703.049831704.072081707.093471809.101531810.02520 | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | DOI | MR | DOI | MR | DOI
[17] I. Gelfand, M. Kapranov, A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 ; V. Dolotin, A. Morozov, Introduction to Non-Linear Algebra, World Sci., Singapore, 2007, arXiv: ; А. Ю. Морозов, Ш. Р. Шакиров, “Новые и старые результаты в теории результантов”, ТМФ, 163:2 (2010), 222–257, arXiv: hep-th/06090220911.5278 | DOI | MR | DOI | MR | Zbl | DOI
[18] A. Mironov, A. Morozov, “Sum rules for characters from character-preservation property of matrix models”, JHEP, 08 (2018), 163, 27 pp., arXiv: ; “On the complete perturbative solution of one-matrix models”, Phys. Lett. B, 771 (2017), 503–507, arXiv: ; “Correlators in tensor models from character calculus”, 774 (2017), 210–216, arXiv: ; A. Morozov, A. Popolitov, Sh. Shakirov, “On $(q,t)$-deformation of Gaussian matrix model”, Phys. Lett. B, 784 (2018), 342–344, arXiv: ; H. Itoyama, A. Mironov, A. Morozov, “From Kronecker to tableau pseudo-characters in tensor models”, Phys. Lett. B, 788 (2019), 76–81, arXiv: ; “Ward identities and combinatorics of rainbow tensor models”, JHEP, 06 (2017), 115, 66 pp., arXiv: ; “Cut and join operator ring in tensor models”, Nucl. Phys. B, 932 (2018), 52–118, arXiv: ; R. de Mello Koch, S. Ramgoolam, From matrix models and quantum fields to Hurwitz space and the absolute Galois group, arXiv: ; J. Ben Geloun, S. Ramgoolam, Counting tensor model observables and branched covers of the 2-sphere, arXiv: ; P. Diaz, S.-J. Rey, “Orthogonal bases of invariants in tensor models”, JHEP, 02 (2018), 089, 13 pp., arXiv: ; “Invariant operators, orthogonal bases and correlators in general tensor models”, Nucl. Phys. B, 932 (2018), 254–277, arXiv: ; R. de Mello Koch, D. Gossman, L. Tribelhorn, “Gauge invariants, correlators and holography in bosonic and fermionic tensor models”, JHEP, 09 (2017), 011, 28 pp., arXiv: ; J. Ben Geloun, S. Ramgoolam, “Tensor models, Kronecker coefficients and permutation centralizer algebras”, JHEP, 11 (2017), 092, 73 pp., arXiv: ; P. Diaz, “Tensor and matrix models: a one-night stand or a lifetime romance?”, JHEP, 06 (2018), 140, 18 pp., arXiv: 1807.024091705.009761706.036671803.114011808.077831704.086481710.100271002.16341307.64901706.026671801.105061707.014551708.035241803.04471 | DOI | MR | DOI | DOI | DOI | MR | DOI | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR | DOI | MR