Hamiltonian operators with zero-divergence constraints
Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 3-18 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using previously proposed techniques, we derive the defining system for a differential algebra associated with zero-divergence constraints. We study this system and present a simple class of its solutions.
Keywords: differential algebra, Hamiltonian operator, total partial derivative.
Mots-clés : Lie–Poisson structure, constraint
@article{TMF_2019_200_1_a0,
     author = {V. V. Zharinov},
     title = {Hamiltonian operators with zero-divergence constraints},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--18},
     year = {2019},
     volume = {200},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Hamiltonian operators with zero-divergence constraints
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 3
EP  - 18
VL  - 200
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a0/
LA  - ru
ID  - TMF_2019_200_1_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Hamiltonian operators with zero-divergence constraints
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 3-18
%V 200
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a0/
%G ru
%F TMF_2019_200_1_a0
V. V. Zharinov. Hamiltonian operators with zero-divergence constraints. Teoretičeskaâ i matematičeskaâ fizika, Tome 200 (2019) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/TMF_2019_200_1_a0/

[1] P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | DOI | MR | MR | Zbl | Zbl

[2] V. V. Zharinov, “Struktury Li–Puassona nad differentsialnymi algebrami”, TMF, 192:3 (2017), 459–472 | DOI | DOI | MR

[3] V. V. Zharinov, “O gamiltonovykh operatorakh v differentsialnykh algebrakh”, TMF, 193:3 (2017), 369–380 | DOI | DOI | MR

[4] V. V. Zharinov, “Evolyutsionnye sistemy so svyazyami v vide uslovii nulevoi divergentsii”, TMF, 163:1 (2010), 3–16 | DOI | DOI | Zbl

[5] V. V. Kozlov, “Linear Hamiltonian systems: quadratic integrals, singular subspaces and stability”, Regul. Chaotic Dyn., 23:1 (2018), 26–46 | DOI | MR

[6] V. V. Kozlov, O. G. Smolyanov, “Hamiltonian approach to secondary quantization”, Dokl. RAN, 483:2 (2018), 1–4 | DOI

[7] A. A. Slavnov, “60 years of nonabelian gauge fields”, Particle Physics at the Year of Light, Proceedings of the Seventeenth Lomonosov Conference on Elementary Particle Physics (Moscow, Russia, August 20–26, 2015), ed. A. I. Studenikin, World Sci., Singapore, 2017, 435–442 | DOI

[8] A. A. Slavnov, “O vozmozhnosti opisaniya neabelevykh massivnykh kalibrovochnykh polei v ramkakh perenormiruemoi teorii”, TMF, 193:3 (2017), 484–492 | DOI | DOI | MR

[9] A. A. Slavnov, “Kvantovanie neabelevykh kalibrovochnykh polei”, Tr. MIAN, 289 (2015), 304–308 | DOI

[10] R. Ch. Kulaev, A. K. Pogrebkov, A. B. Shabat, “Sistema Darbu: liuvilleva reduktsiya i yavnoe reshenie”, Tr. MIAN, 302 (2018), 268–286 | DOI | DOI | MR

[11] I. Ya. Arefeva, I. V. Volovich, “O modeli Sachdeva–Ie–Kitaeva v realnom vremeni”, TMF, 197:2 (2018), 296–310 | DOI | DOI

[12] I. Aref'eva, M. Khramtsov, M. Tikhanovskaya, I. Volovich, “On replica-nondiagonal large $N$ saddles in the SYK model”, EPJ Web Conf., 191 (2018), 06007, 8 pp. | DOI

[13] M. O. Katanaev, “Deistvie Cherna–Saimonsa i disklinatsii”, Tr. MIAN, 301 (2018), 124–143 | DOI | DOI

[14] A. G. Sergeev, “String theory and quasiconformal maps,”, Lobachevskii J. Math., 38:2 (2017), 352–363 | DOI | MR