Mots-clés : transfer matrix
@article{TMF_2019_199_3_a9,
author = {I. M. Ratner},
title = {Eigenvalues of the~transfer matrix of the~three-dimensional {Ising} model in the~particular case $n=m=2$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {497--510},
year = {2019},
volume = {199},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a9/}
}
TY - JOUR AU - I. M. Ratner TI - Eigenvalues of the transfer matrix of the three-dimensional Ising model in the particular case $n=m=2$ JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 497 EP - 510 VL - 199 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a9/ LA - ru ID - TMF_2019_199_3_a9 ER -
I. M. Ratner. Eigenvalues of the transfer matrix of the three-dimensional Ising model in the particular case $n=m=2$. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 497-510. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a9/
[1] E. Ising, “Beitrag zur Theorie des Ferromagnetismus”, Z. Phys., 31:1 (1925), 253–258 | DOI
[2] L. Onsager, “Crystal statistics. I. A two-dimensional model with an order-disorder transition”, Phys. Rev., 65:3–4 (1944), 117–149 | DOI | MR
[3] B. Kaufman, “Crystal statistics. II. Partition function evaluated by spinor analysis”, Phys. Rev., 76:8 (1949), 1231–1243 | DOI
[4] Yu. B. Rumer, “Termodinamika ploskoi dipolnoi reshetki”, UFN, 53:2 (1954), 245–284 | DOI
[5] M. Kac, J. C. Ward, “A combinatorial solution of the two-dimensional Ising model”, Phys. Rev., 88:6 (1952), 1332–1337 | DOI
[6] S. Sherman, “Combinatorial aspects of the Ising model for ferromagnetism. I. A conjecture of Feynman on paths and graphs”, J. Math. Phys., 1:3 (1960), 202–217 | DOI | MR
[7] C. A. Hurst, H. S. Green, “New solution of the Ising problem for a rectangular lattice”, J. Chem. Phys., 33:4 (1960), 1059–1062 | DOI | MR
[8] P. W. Kasteleyn, “Dimer statistic and phase transitions”, J. Math. Phys., 4:2 (1963), 287–293 | DOI | MR
[9] N. V. Vdovichenko, “Vychislenie statisticheskoi summy ploskoi dipolnoi reshetki”, ZhETF, 47:2 (1964), 715–731 | MR
[10] Yu. M. Zinovev, “Formula Onzagera”, Tr. MIAN, 228 (2000), 298–319 | MR | Zbl
[11] Yu. M. Zinovev, “Model Izinga i $L$-funktsiya”, TMF, 126:1 (2001), 84–101 | DOI | DOI | MR | Zbl
[12] Yu. M. Zinovev, “Spontannaya namagnichennost v dvumernoi modeli Izinga”, TMF, 136:3 (2003), 444–462 | DOI | DOI | MR | Zbl
[13] I. M. Ratner, “Translyatsionnaya simmetriya kristalla i ee opisanie s pomoschyu mnogomernykh matrits”, Issledovaniya, sintez, tekhnologiya krupnotonnazhnykh lyuminoforov, Sb. trudov VNII lyuminoforov, vyp. 36, Stavropol, 1989, 88–99
[14] K. Khuang, Statisticheskaya mekhanika, Mir, M., 1966 | MR
[15] N. P. Sokolov, Prostranstvennye matritsy i ikh prilozheniya, Fizmatlit, M., 1960
[16] M. A. Yurischev, “Nizhnie i verkhnie granitsy dlya kriticheskoi temperatury v trekhmernoi anizotropnoi modeli Izinga”, ZhETF, 125:6 (2004), 1349–1366 | DOI
[17] I. M. Ratner, “Matematicheskoe modelirovanie trekhmernoi reshetki Izinga”, Infokommunikatsionnye tekhnologii v nauke, proizvodstve i obrazovanii, SevKavGTU, Stavropol, 2004, 514–521