Energy characteristics of the~anomalous diffusion process
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 479-496
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider an anomalous diffusion model in which space–time nonlocalities
are generated by singular zones forming sub- and superdiffusion transfer
regimes. The dynamical equation for these regimes appears in the form of the quasiparticle interaction law and is an analogue of the dynamical equation
for the photon–electron interaction.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
anomalous diffusion, Compton effect.
Keywords: stationary process, Hausdorff measure, energy transfer, momentum transfer
                    
                  
                
                
                Keywords: stationary process, Hausdorff measure, energy transfer, momentum transfer
@article{TMF_2019_199_3_a8,
     author = {N. S. Arkashov and V. A. Seleznev},
     title = {Energy characteristics of the~anomalous diffusion process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--496},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/}
}
                      
                      
                    TY - JOUR AU - N. S. Arkashov AU - V. A. Seleznev TI - Energy characteristics of the~anomalous diffusion process JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 479 EP - 496 VL - 199 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/ LA - ru ID - TMF_2019_199_3_a8 ER -
N. S. Arkashov; V. A. Seleznev. Energy characteristics of the~anomalous diffusion process. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/
