Energy characteristics of the anomalous diffusion process
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 479-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an anomalous diffusion model in which space–time nonlocalities are generated by singular zones forming sub- and superdiffusion transfer regimes. The dynamical equation for these regimes appears in the form of the quasiparticle interaction law and is an analogue of the dynamical equation for the photon–electron interaction.
Mots-clés : anomalous diffusion, Compton effect.
Keywords: stationary process, Hausdorff measure, energy transfer, momentum transfer
@article{TMF_2019_199_3_a8,
     author = {N. S. Arkashov and V. A. Seleznev},
     title = {Energy characteristics of the~anomalous diffusion process},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--496},
     year = {2019},
     volume = {199},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/}
}
TY  - JOUR
AU  - N. S. Arkashov
AU  - V. A. Seleznev
TI  - Energy characteristics of the anomalous diffusion process
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 479
EP  - 496
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/
LA  - ru
ID  - TMF_2019_199_3_a8
ER  - 
%0 Journal Article
%A N. S. Arkashov
%A V. A. Seleznev
%T Energy characteristics of the anomalous diffusion process
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 479-496
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/
%G ru
%F TMF_2019_199_3_a8
N. S. Arkashov; V. A. Seleznev. Energy characteristics of the anomalous diffusion process. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 479-496. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a8/

[1] N. S. Arkashov, V. A. Seleznev, “O modeli sub- i superdiffuzii na topologicheskikh prostranstvakh s samopodobnoi strukturoi”, Teoriya veroyatn. i ee primen., 60:2 (2015), 209–226 | DOI | DOI

[2] N. S. Arkashov, V. A. Seleznev, “O dinamike statsionarnykh protsessov sdviga s kantorovoi strukturoi”, Sib. matem. zhurn., 58:5 (2017), 972–988 | DOI | DOI

[3] Yu. A. Rozanov, Sluchainye protsessy, Nauka, M., 1971 | MR | Zbl

[4] E. Vikhman, Kvantovaya fizika, Berkleevskii kurs fiziki, 4, Nauka, M., 1977

[5] G. Edgar, Measure, Topology, and Fractal Geometry, Springer, New York, 2008 | DOI | MR

[6] I. A. Ibragimov, Yu. V. Linnik, Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965 | MR | MR | Zbl | Zbl

[7] A. N. Shiryaev, Veroyatnost, Nauka, M., 1980 | DOI | MR | Zbl

[8] E. A. Gorin, B. N. Kukushkin, “Integraly, svyazannye s kantorovoi lestnitsei”, Algebra i analiz, 15:3 (2003), 188–220 | DOI | MR | Zbl