Refinement of the quantum scattering theory approximation for the Yukawa potential using the Meijer's-function technique
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 460-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Our goal is to find and apply simple methods for calculating the scattering cross sections of particles in a screened Coulomb potential in a wider range of wave vector magnitudes than is possible in the Born approximation. Using the technique of Meijer's G-function, we obtain expressions for the scattering amplitude and the quantum scattering cross section in the limit $kd\gg1$, where $d$ is the screening radius and $k$ is the wavenumber. We compare the analytic results with quantum computations of the elastic scattering process by expanding the solution in a power series of partial waves. We investigate the domain of wave vectors where the Born approximation is no longer applicable but the new approximation works. In this domain, the number of angular momenta that must be taken into account in summing the partial cross sections increases abruptly, and a more precise analytic approximation might therefore noticeably reduce the computational effort. We also show that calculations of the classical integrated scattering cross section must take into account that the finite screening length of an interaction potential causes a cross section to shift off the mass shell. Taking this shift into account allows obtaining a good coincidence of numerical and analytic data for the scattering cross section, including beyond the applicability limits of the Born approximation.
Keywords: quantum scattering theory, partial wave, Meijer's G-function, Born approximation, screened Coulomb potential.
@article{TMF_2019_199_3_a7,
     author = {A. N. Starostin and A. G. Sukharev},
     title = {Refinement of the~quantum scattering theory approximation for {the~Yukawa} potential using {the~Meijer's-function} technique},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {460--478},
     year = {2019},
     volume = {199},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a7/}
}
TY  - JOUR
AU  - A. N. Starostin
AU  - A. G. Sukharev
TI  - Refinement of the quantum scattering theory approximation for the Yukawa potential using the Meijer's-function technique
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 460
EP  - 478
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a7/
LA  - ru
ID  - TMF_2019_199_3_a7
ER  - 
%0 Journal Article
%A A. N. Starostin
%A A. G. Sukharev
%T Refinement of the quantum scattering theory approximation for the Yukawa potential using the Meijer's-function technique
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 460-478
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a7/
%G ru
%F TMF_2019_199_3_a7
A. N. Starostin; A. G. Sukharev. Refinement of the quantum scattering theory approximation for the Yukawa potential using the Meijer's-function technique. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 460-478. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a7/

[1] A. N. Starostin, V. K. Gryaznov, Yu. V. Petrushevich, “Razvitie teorii raspredeleniya chastits po impulsam s uchetom kvantovykh effektov”, ZhETF, 152:5(11) (2017), 1104–1112 | DOI

[2] V. M. Galitskii, V. V. Yakimets, “Relaksatsiya chastitsy v maksvellovskom gaze”, ZhETF, 51:3 (1966), 957–964

[3] S. T. Belyaev, “Energeticheskii spektr neidealnogo boze-gaza”, ZhETF, 34:2 (1958), 433–446 | Zbl

[4] V. M. Galitskii, “Energeticheskii spektr neidealnogo fermi-gaza”, ZhETF, 34:1 (1958), 151–162

[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 9, Statisticheskaya fizika. Chast 2. Teoriya kondensirovannogo sostoyaniya, Fizmatlit, M., 2002 | MR

[6] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 3, Kvantovaya mekhanika. Nerelyativiskaya teoriya, Fizmatlit, M., 1989 | MR

[7] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marychev, Integraly i ryady, v. 3, Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR

[8] F. Scheck, Quantum Physics, Springer, Berlin, Heidelberg, 2013 | DOI | MR

[9] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR | MR | Zbl | Zbl

[10] A. N. Starostin, V. K. Rerikh, “Skhodyascheesya uravnenie sostoyaniya slaboneidealnoi plazmy vodoroda bez tainstv”, ZhETF, 127:1 (2005), 186–219 | DOI

[11] Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York, San Francisco, London, 1975 | MR

[12] A. M. Mathai, R. K. Saxena, Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Lecture Notes in Mathematics, 348, Springer, Berlin, Heidelberg, 1973 | DOI | MR

[13] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[14] C. J. Kimball, “Short-range correlations and the structure factor and momentum distribution of electrons”, J. Phys. A: Math. Gen., 8:9 (1975), 1513–1517 | DOI

[15] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR | Zbl