@article{TMF_2019_199_3_a5,
author = {A. I. Klevin},
title = {Asymptotic eigenfunctions of the~{\textquotedblleft}bouncing ball{\textquotedblright} type for the~two-dimensional {Schr\"odinger} operator with a~symmetric potential},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {429--444},
year = {2019},
volume = {199},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a5/}
}
TY - JOUR AU - A. I. Klevin TI - Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 429 EP - 444 VL - 199 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a5/ LA - ru ID - TMF_2019_199_3_a5 ER -
%0 Journal Article %A A. I. Klevin %T Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential %J Teoretičeskaâ i matematičeskaâ fizika %D 2019 %P 429-444 %V 199 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a5/ %G ru %F TMF_2019_199_3_a5
A. I. Klevin. Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 429-444. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a5/
[1] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh difraktsii korotkikh voln, Nauka, M., 1972 | MR | MR
[2] K. Nakamura, T. Harayama, Quantum Chaos and Quantum Dots, Oxford Univ. Press, Oxford, 2004
[3] V. P. Maslov, The Complex WKB Method for Nonlinear Equations I: Linear Theory, Progress in Physics, 16, Birkhäuser, Basel, 1994 | DOI | MR
[4] V. V. Belov, S. Yu. Dobrokhotov, “Kvaziklassicheskie asimptotiki Maslova s kompleksnymi fazami. I. Obschii podkhod”, TMF, 92:2 (1992), 215–254 | DOI | MR
[5] V. V. Belov, O. S. Dobrokhotov, S. Yu. Dobrokhotov, “Izotropnye tory, kompleksnyi rostok i indeks Maslova, normalnye formy i kvazimody mnogomernykh spektralnykh zadach”, Matem. zametki, 69:4 (2001), 483–514 | DOI | DOI | MR | Zbl
[6] J. V. Ralston, “On the construction of quasimodes associated with stable periodic orbits”, Commun. Math. Phys., 51:3 (1976), 219–242 | DOI | MR
[7] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopaedia of Mathematical Sciences, 3, Springer, Berlin, 2006 | MR
[8] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, A. A. Yevseyevich, “Quantization of closed orbits in Dirac theory by Maslov's complex germ method”, J. Phys. A: Math. Gen., 27:3 (1994), 1021–1043 | DOI | MR
[9] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, A. A. Yevseyevich, “Quasi-classical spectral series of the Dirac operators corresponding to quantized two-dimensional Lagrangian tori”, J. Phys. A: Math. Gen., 27:15 (1994), 5273–5306 | DOI | MR
[10] V. V. Belov, V. M. Olive, J. L. Volkova, “The Zeeman effect for the ‘anisotropic hydrogen atoms’ in the complex WKB approximation: II. Quantization of two-dimensional Lagrangian tori (with focal points) for the Pauli operator with spin-orbit interaction”, J. Phys. A: Math. Gen., 28:20 (1995), 5811–5829 | DOI | MR
[11] V. V. Belov, V. M. Olive, J. L. Volkova, “The Zeeman effect for the ‘anistropic hydrogen atom’ in the complex WKB approximation: I. Quantization of closed orbits for the Pauli operator with spin-orbit interaction”, J. Phys. A: Math. Gen., 28:20 (1995), 5799–5810 | DOI | MR
[12] I. M. Gelfand, V. B. Lidskii, “O strukture oblastei ustoichivosti lineinykh kanonicheskikh sistem differentsialnykh uravnenii s periodicheskimi koeffitsientami”, UMN, 10:1(63) (1955), 3–40 | MR | Zbl
[13] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972 | MR | Zbl
[14] F. W. J. Olver, Asymptotic and Special Functions, A. K. Peters, Wellesley, MA, 1997 | MR
[15] C. Chester, B. Friedman, F. Ursell, “An extension of the method of steepest descent”, Math. Proc. Cambridge Phil. Soc., 53:3 (1957), 599–611 | DOI | MR
[16] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo Leningr. un-ta, L., 1991 | MR
[17] C. Yu. Dobrokhotov, D. S. Minenkov, S. B. Shlosman, “Asimptotika volnovykh funktsii statsionarnogo uravneniya Shredingera v kamere Veilya”, TMF, 197:2 (2018), 269–278 | DOI | DOI
[18] C. Yu. Dobrokhotov, A. V. Tsvetkova, “O lagranzhevykh mnogoobraziyakh svyazannykh s asimptotikoi polinomov Ermita”, Matem. zametki, 104:6 (2018), 835–850 | DOI | DOI