Two-dimensional motion of a slow quantum particle in the field of a central long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 405-428 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the two-dimensional motion of a slow quantum particle in the field of a central long-range potential decaying in the limit of long distances $r$ as the power $r^{-\beta}$ with the exponent $\beta\in(1,2)$. We find the low-temperature asymptotic behavior for all partial phases and the differential cross section of the particle scattering and derive a rather simple approximation for the weakly bound state energy.
Keywords: two-dimensional scattering, central long-range potential, low-energy asymptotics, weakly bound state energy.
@article{TMF_2019_199_3_a4,
     author = {V. V. Pupyshev},
     title = {Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--428},
     year = {2019},
     volume = {199},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Two-dimensional motion of a slow quantum particle in the field of a central long-range potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 405
EP  - 428
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/
LA  - ru
ID  - TMF_2019_199_3_a4
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Two-dimensional motion of a slow quantum particle in the field of a central long-range potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 405-428
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/
%G ru
%F TMF_2019_199_3_a4
V. V. Pupyshev. Two-dimensional motion of a slow quantum particle in the field of a central long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 405-428. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/

[1] M. V. Fedoryuk, Asimtoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[2] D. R. Yafaev, “The low energy scattering for slowly decreasing potentials”, Commun. Math. Phys., 85:2 (1982), 177–196 | DOI | MR

[3] A. A. Kvitsinskii, “Rasseyanie na dalnodeistvuyuschikh potentsialakh pri nizkikh energiyakh”, TMF, 59:3 (1984), 472–478 | DOI | MR

[4] V. V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976 | MR

[5] H. Friedrich, Scattering Theory, Lecture Notes in Physics, 872, Springer, Berlin, 2013 | DOI | MR

[6] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[7] V. I. Smirnov, Kurs vysshei matematiki, v. 2, 3, ch. 2, Nauka, M., 1974 | Zbl

[8] B. M. Budak, S. V. Fomin, Kratnye integraly i ryady, Fizmatlit, M., 2002 | MR | Zbl

[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 1, Elementarnye funktsii, 1981 ; т. 3, Специальные функции, Наука, М., 1983 | MR | MR | Zbl | MR

[10] M. V. Fedoryuk, Asimptotika: integraly i ryady, Knizhnyi dom “LIBROKOM”, M., 2009