Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 405-428

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the two-dimensional motion of a slow quantum particle in the field of a central long-range potential decaying in the limit of long distances $r$ as the power $r^{-\beta}$ with the exponent $\beta\in(1,2)$. We find the low-temperature asymptotic behavior for all partial phases and the differential cross section of the particle scattering and derive a rather simple approximation for the weakly bound state energy.
Keywords: two-dimensional scattering, central long-range potential, low-energy asymptotics, weakly bound state energy.
@article{TMF_2019_199_3_a4,
     author = {V. V. Pupyshev},
     title = {Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {405--428},
     publisher = {mathdoc},
     volume = {199},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/}
}
TY  - JOUR
AU  - V. V. Pupyshev
TI  - Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 405
EP  - 428
VL  - 199
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/
LA  - ru
ID  - TMF_2019_199_3_a4
ER  - 
%0 Journal Article
%A V. V. Pupyshev
%T Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 405-428
%V 199
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/
%G ru
%F TMF_2019_199_3_a4
V. V. Pupyshev. Two-dimensional motion of a~slow quantum particle in the~field of a~central long-range potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 405-428. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a4/