Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 372-398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a complete algorithm for deriving quasiperiodic solutions of the negative-order KdV (nKdV) hierarchy using the backward Neumann systems. Starting with the nonlinearization of a Lax pair, the nKdV hierarchy reduces to a family of backward Neumann systems via separating temporal and spatial variables. We show that the backward Neumann systems are integrable in the Liouville sense and their involutive solutions yield finite-parameter solutions of the nKdV hierarchy. We present the negative-order Novikov equation, which specifies a finite-dimensional invariant subspace of nKdV flows. Using the Abel–Jacobi variable, we integrate the nKdV flows with Abel–Jacobi solutions on the Jacobian variety of a Riemann surface. Finally, we study the Riemann–Jacobi inversion of the Abel–Jacobi solutions, whence we obtain some quasiperiodic solutions of the nKdV hierarchy.
Keywords: nKdV hierarchy, backward Neumann system
Mots-clés : quasiperiodic solution.
@article{TMF_2019_199_3_a2,
     author = {Jinbing Chen},
     title = {Quasiperiodic solutions of the~negative-order {Korteweg{\textendash}de~Vries} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {372--398},
     year = {2019},
     volume = {199},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a2/}
}
TY  - JOUR
AU  - Jinbing Chen
TI  - Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 372
EP  - 398
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a2/
LA  - ru
ID  - TMF_2019_199_3_a2
ER  - 
%0 Journal Article
%A Jinbing Chen
%T Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 372-398
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a2/
%G ru
%F TMF_2019_199_3_a2
Jinbing Chen. Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 372-398. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a2/

[1] J. M. Verosky, “Negative powers of Olver recursion operators”, J. Math. Phys., 32:7 (1991), 1733–1736 | DOI | MR

[2] A. N. W. Hone, J. P. Wang, “Prolongation algebras and Hamiltonian operators for peakon equation”, Inverse Problems, 19:1 (2003), 129–145 | DOI | MR

[3] S. Y. Lou, “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, J. Math. Phys., 35:5 (1994), 2390–2396 | DOI | MR

[4] V. A. Andreev, M. V. Shmakova, “Hierarchy of lower Korteweg–de Vries equations and supersymmetry structure of Miura transformations”, J. Math. Phys., 34:8 (1993), 3491–3506 | DOI | MR

[5] A. Karasu-Kalkanli, A. Karasu, A. Sakovich, S. Sakovich, R. Turhan, “A new integrable generalization of the KdV equation”, J. Math. Phys., 49:7 (2008), 073516, 10 pp., arXiv: 0708.3247 | DOI | MR

[6] B. A. Kupershmidt, “KdV6: An integrable system”, Phys. Lett. A, 372:15 (2008), 2634–2639, arXiv: 0709.3848 | DOI | MR

[7] R. G. Zhou, “Mixed hierarchy of soliton equations”, J. Math. Phys., 50:12 (2009), 123502, 12 pp. | DOI | MR

[8] Z. J. Qiao, E. G. Fan, “Negative-order Korteweg–de Vries equations”, Phys. Rev. E, 86:1 (2012), 016601, 20 pp. | DOI

[9] Z. J. Qiao, J. B. Li, “Negative-order KdV equation with both solitons and kink wave solutions”, Europhys. Lett., 94:5 (2011), 50003, 5 pp., arXiv: 1101.1605 | DOI

[10] B. Fuchssteiner, “Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa–Holm equation”, Phys. D, 95:3–4 (1996), 229–243 | DOI | MR

[11] R. Camassa, D. D. Holm, “An integrable shallow wave equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR

[12] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation”, Inverse Problems, 22:6 (2006), 2197–2207, arXiv: nlin/0603019 | DOI | MR

[13] A. Constantin, J. Escher, “Wave breaking for nonlinear nonlocal shallow water equations”, Acta Math., 181:2 (1998), 229–243 | DOI | MR

[14] A. Degasperis, M. Procesi, “Asymptotic integrability”, Symmetry and Perturbation Theory (Rome, 16–22 December, 1998), eds. A. Degasperis, G. Gaeta, World Sci., Singapore, 1999, 23–37 | MR

[15] M. Chen, S.-Q. Liu, Y. J. Zhang, “A two-component generalization of the Camassa–Holm equation and its solutions”, Lett. Math. Phys., 75:1 (2006), 1–15, arXiv: nlin/0501028 | DOI | MR

[16] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR

[17] X. G. Geng, B. Xue, “A three-component generalization of Camassa–Holm equation with $N$-peakon solutions”, Adv. Math., 226:1 (2011), 827–839 | DOI | MR

[18] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[19] J. Moser, “Geometry of quadrics and spectral theory”, The Chern Symposium 1979 (Berkeley, CA, June 1979), eds. W.-Y. Hsiang, S. Kobayashi, I. M. Singer, J. Wolf, H.-H. Wu, A. Weinstein, Springer, New York, 1980, 147–188 | MR

[20] H. P. McKean, E. Trubowitz, “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Commun. Pure Appl. Math., 29:2 (1976), 143–226 | DOI | MR

[21] I. V. Cherednik, “Differentsialnye uravneniya dlya funktsii Beikera–Akhiezera algebraicheskikh krivykh”, Funkts. analiz i ego pril., 12:3 (1978), 45–54 | DOI | MR | Zbl

[22] B. A. Dubrovin, T. M. Malanyuk, I. M. Krichever, V. G. Makhankov, “Tochnye resheniya nestatsionarnogo uravneniya Shredingera s samosoglasovannymi potentsialami”, EChAYa, 19:3 (1988), 579–621

[23] I. Krichever, “Linear operators with self-consistent coefficients and rational reductions of KP hierarchy”, Phys. D, 87:1–4 (1995), 14–19 | DOI | MR

[24] C. W. Cao, X. G. Geng, “Classical integrable systems generated through nonlinearization of eigenvalue problems”, Nonlinear Physics (Shanghai, People's Republic of China, April 24–30, 1989), Research Reports in Physics, eds. C. Gu, Y. Li, G. Tu, Y. Zeng, Springer, Berlin, Heidelberg, 1990, 68–78 | DOI | MR

[25] O. Ragnisco, C. W. Cao, Y. T. Wu, “On the relation of the stationary Toda equation and the symplectic maps”, J. Phys. A: Math. Theor., 28:3 (1995), 573–588 | DOI | MR

[26] R. G. Zhou, “The finite-band solution of the Jaulent–Miodek equation”, J. Math. Phys., 38:5 (1997), 2535–2546 | DOI | MR

[27] H. H. Dai, X. G. Geng, “New finite-dimensional completely integrable systems associated with the sine-Gordon equation”, J. Phys. Soc. Japan, 68:9 (1999), 2878–2881 | DOI | MR

[28] C. W. Cao, Y. T. Wu, X. G. Geng, “Relation between the Kadometsev–Petviashvili equation and the confocal involutive system”, J. Math. Phys., 40:8 (1999), 3948–3970 | DOI | MR

[29] Syan-Tsyuo Gen, Sin Tszen, “Ispolzovanie trigonalnykh krivykh v reshetochnoi ierarkhii Blazhaka–Marsinyaka”, TMF, 190:1 (2017), 21–47 | DOI | DOI | MR

[30] J. B. Chen, D. E. Pelinovsky, “Rogue periodic waves of the mKdV equation”, Nonlinearity, 31:5 (2018), 1955–1980, arXiv: 1704.08584 | DOI | MR

[31] J. B. Chen, D. E. Pelinovsky, “Rogue periodic waves of the focusing nonlinear Schrödinger equation”, Proc. Roy. Soc. A, 474:2210 (2018), 20170814, 18 pp., arXiv: 1711.06579 | DOI | MR

[32] J. B. Chen, “Quasi-periodic solutions to a negative-order integrable system of 2-component KdV equation”, Internat. J. Geom. Methods Modern Phys., 15:3 (2018), 1850040, 34 pp. | DOI | MR

[33] P. D. Lax, “Integrals of nonlinear equation of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[34] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, URSS, M., 2003 | MR

[35] V. K. Mel'nikov, “Integration of the Korteweg–de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR

[36] J. B. Chen, “Finite-gap solutions of $2+1$ dimensional integrable nonlinear evolution equations generated by the Neumann systems”, J. Math. Phys., 51:8 (2010), 083514, 26 pp. | DOI | MR

[37] G. Z. Tu, “The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems”, J. Math. Phys., 30:2 (1989), 330–338 | DOI | MR

[38] W. X. Ma, B. Fuchssteiner, W. Oevel, “A $3\times 3$ matrix spectral problem for AKNS hierarchy and its binary nonlinearization”, Phys. A, 233:1–2 (1996), 331–354 | MR

[39] S. P. Novikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza. I”, Funkts. analiz i ego pril., 8:3 (1974), 54–66 | DOI | MR | Zbl

[40] P. D. Lax, “Periodic solutions of the KdV equation”, Commun. Pure Appl. Math., 28:1 (1975), 141–188 | DOI

[41] D. Mamford, Lektsii o teta-funktsiyakh, Mir, M., 1988 | MR

[42] F. Griffits, Dzh. Kharris, Printsipy algebraicheskoi geometrii, Mir, M., 1982 | DOI | MR | MR | Zbl | Zbl

[43] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Sci., Singapore, 1991 | DOI | MR