@article{TMF_2019_199_3_a1,
author = {Z. Amjad and B. Haider},
title = {Binary {Darboux} transformations of the~supersymmetric {Heisenberg} magnet model},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {357--371},
year = {2019},
volume = {199},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/}
}
Z. Amjad; B. Haider. Binary Darboux transformations of the supersymmetric Heisenberg magnet model. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 357-371. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/
[1] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR
[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl
[3] S. J. Orfanidis, “${\rm SU}(n)$ Heisenberg spin chain”, Phys. Lett. A, 75:4 (1980), 304–306 | DOI | MR
[4] Z. Amjad, B. Haider, “Darboux transformations of supersymmetric Heisenberg magnet model”, J. Phys. Commun., 2:3 (2018), 035019, 8 pp. | DOI
[5] B. Haider, M. Hassan, “The $U(N)$ chiral model and exact multi-solitons”, J. Phys. A: Math. Theor., 41:25 (2008), 255202, 17 pp. | DOI | MR
[6] J. J. C. Nimmo, Darboux transformation from reductions of KP hierarchy, arXiv: solv-int/9410001
[7] J. J. C. Nimmo, “Darboux transformations for discrete systems”, Chaos Solitons Fractals, 11:1–3 (2000), 115–120 | DOI | MR
[8] D. K. Nimmo, K. R. Dzhilson, Ya. Okhta, “Primeneniya preobrazovanii Darbu k samodualnym uravneniyam Yanga–Millsa”, TMF, 122:2 (2000), 284–293 | DOI | DOI | MR | Zbl
[9] W. Oevel, W. Schief, “Darboux theorems and the KP hierarchy”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series (Series C: Mathematical and Physical Sciences), 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 193–206 | DOI | MR
[10] B. Haider, M. Hassan, “Binary Darboux transformation for the supersymmetric principal chiral field model”, J. Nonlinear Math. Phys., 18:4 (2011), 557–581 | DOI | MR
[11] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR
[12] G. Darboux, “Sur une proposition relative aux équations linéaires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459 | Zbl
[13] V. B. Matveev, M. A. Salle, Darboux Transformations and Soliton, Springer, Berlin, 1991 | MR
[14] V. E. Zakharov, A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space-time”, Commun. Math. Phys., 74:1, 21–40 | DOI | MR
[15] C. H. Gu, Z. X. Zhou, “On the Darboux matrices of Bäcklund transformations for AKNS systems”, Lett. Math. Phys., 13:3, 179–187 | MR
[16] C. Gu, H. Hu, Z. Zhou, Darboux Transformation in Integrable Systems. Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR
[17] B. Haider, M. Hassan, “Quasideterminant multisoliton solutions of a supersymmetric chiral field model in two dimensions”, J. Phys. A: Math. Theor., 43:3 (2010), 035204, 19 pp. | DOI | MR
[18] F. F. Voronov, Sh. Gill, E. S. Shemyakova, “Preobrazovaniya Darbu dlya differentsialnykh operatorov na superpryamoi”, UMN, 70:6(426) (2015), 207–208 | DOI | DOI | MR | Zbl
[19] S. Li, E. Shemyakova, Th. Voronov, “Differential operators on the superline, Berezinians and Darboux transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714, arXiv: 1605.07286 | DOI | MR
[20] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR
[21] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl
[22] I. Gelfand, V. Retakh, R. L. Wilson, “Quaternionic quasideterminants and determinants”, Lie Groups and Symmetric Spaces: In Memory of F. I. Karpelevich, American Mathematical Society Translations. Ser. 2, 210, ed. S. G. Gindikin, AMS, Providence, RI, 2003, 111–123, arXiv: math.QA/0206211 | DOI | MR
[23] I. M. Gelfand, V. S. Retakh, “Teoriya nekommutativnykh determinantov i kharakteristicheskie funktsii grafov”, Funkts. analiz i ego pril., 26:4 (1992), 1–20 | DOI | MR | Zbl