Binary Darboux transformations of the supersymmetric Heisenberg magnet model
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 357-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate the standard binary Darboux transformation of the supersymmetric Heisenberg model and calculate multisoliton solutions of the quasideterminants of the supersolitons of the Heisenberg magnet model by iterating the Darboux binary transformation.
Keywords: supersymmetry, integrable system, quasi-Grammian, Heisenberg magnet model.
@article{TMF_2019_199_3_a1,
     author = {Z. Amjad and B. Haider},
     title = {Binary {Darboux} transformations of the~supersymmetric {Heisenberg} magnet model},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {357--371},
     year = {2019},
     volume = {199},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/}
}
TY  - JOUR
AU  - Z. Amjad
AU  - B. Haider
TI  - Binary Darboux transformations of the supersymmetric Heisenberg magnet model
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 357
EP  - 371
VL  - 199
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/
LA  - ru
ID  - TMF_2019_199_3_a1
ER  - 
%0 Journal Article
%A Z. Amjad
%A B. Haider
%T Binary Darboux transformations of the supersymmetric Heisenberg magnet model
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 357-371
%V 199
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/
%G ru
%F TMF_2019_199_3_a1
Z. Amjad; B. Haider. Binary Darboux transformations of the supersymmetric Heisenberg magnet model. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 357-371. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a1/

[1] L. A. Takhtajan, “Integration of the continuous Heisenberg spin chain through the inverse scattering method”, Phys. Lett. A, 64:2 (1977), 235–237 | DOI | MR

[2] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[3] S. J. Orfanidis, “${\rm SU}(n)$ Heisenberg spin chain”, Phys. Lett. A, 75:4 (1980), 304–306 | DOI | MR

[4] Z. Amjad, B. Haider, “Darboux transformations of supersymmetric Heisenberg magnet model”, J. Phys. Commun., 2:3 (2018), 035019, 8 pp. | DOI

[5] B. Haider, M. Hassan, “The $U(N)$ chiral model and exact multi-solitons”, J. Phys. A: Math. Theor., 41:25 (2008), 255202, 17 pp. | DOI | MR

[6] J. J. C. Nimmo, Darboux transformation from reductions of KP hierarchy, arXiv: solv-int/9410001

[7] J. J. C. Nimmo, “Darboux transformations for discrete systems”, Chaos Solitons Fractals, 11:1–3 (2000), 115–120 | DOI | MR

[8] D. K. Nimmo, K. R. Dzhilson, Ya. Okhta, “Primeneniya preobrazovanii Darbu k samodualnym uravneniyam Yanga–Millsa”, TMF, 122:2 (2000), 284–293 | DOI | DOI | MR | Zbl

[9] W. Oevel, W. Schief, “Darboux theorems and the KP hierarchy”, Applications of Analytic and Geometric Methods to Nonlinear Differential Equations, NATO ASI Series (Series C: Mathematical and Physical Sciences), 413, ed. P. A. Clarkson, Kluwer, Dordrecht, 1993, 193–206 | DOI | MR

[10] B. Haider, M. Hassan, “Binary Darboux transformation for the supersymmetric principal chiral field model”, J. Nonlinear Math. Phys., 18:4 (2011), 557–581 | DOI | MR

[11] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR

[12] G. Darboux, “Sur une proposition relative aux équations linéaires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459 | Zbl

[13] V. B. Matveev, M. A. Salle, Darboux Transformations and Soliton, Springer, Berlin, 1991 | MR

[14] V. E. Zakharov, A. V. Mikhailov, “On the integrability of classical spinor models in two-dimensional space-time”, Commun. Math. Phys., 74:1, 21–40 | DOI | MR

[15] C. H. Gu, Z. X. Zhou, “On the Darboux matrices of Bäcklund transformations for AKNS systems”, Lett. Math. Phys., 13:3, 179–187 | MR

[16] C. Gu, H. Hu, Z. Zhou, Darboux Transformation in Integrable Systems. Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | DOI | MR

[17] B. Haider, M. Hassan, “Quasideterminant multisoliton solutions of a supersymmetric chiral field model in two dimensions”, J. Phys. A: Math. Theor., 43:3 (2010), 035204, 19 pp. | DOI | MR

[18] F. F. Voronov, Sh. Gill, E. S. Shemyakova, “Preobrazovaniya Darbu dlya differentsialnykh operatorov na superpryamoi”, UMN, 70:6(426) (2015), 207–208 | DOI | DOI | MR | Zbl

[19] S. Li, E. Shemyakova, Th. Voronov, “Differential operators on the superline, Berezinians and Darboux transformations”, Lett. Math. Phys., 107:9 (2017), 1689–1714, arXiv: 1605.07286 | DOI | MR

[20] I. Gelfand, S. Gelfand, V. Retakh, R. L. Wilson, “Quasideterminants”, Adv. Math., 193:1 (2005), 56–141 | DOI | MR

[21] I. M. Gelfand, V. S. Retakh, “Determinanty matrits nad nekommutativnymi koltsami”, Funkts. analiz i ego pril., 25:2 (1991), 13–25 | DOI | MR | Zbl

[22] I. Gelfand, V. Retakh, R. L. Wilson, “Quaternionic quasideterminants and determinants”, Lie Groups and Symmetric Spaces: In Memory of F. I. Karpelevich, American Mathematical Society Translations. Ser. 2, 210, ed. S. G. Gindikin, AMS, Providence, RI, 2003, 111–123, arXiv: math.QA/0206211 | DOI | MR

[23] I. M. Gelfand, V. S. Retakh, “Teoriya nekommutativnykh determinantov i kharakteristicheskie funktsii grafov”, Funkts. analiz i ego pril., 26:4 (1992), 1–20 | DOI | MR | Zbl