Mots-clés : multicomponent fermion
@article{TMF_2019_199_3_a0,
author = {A. V. Zabrodin},
title = {Matrix modified {Kadomtsev{\textendash}Petviashvili} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {343--356},
year = {2019},
volume = {199},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a0/}
}
A. V. Zabrodin. Matrix modified Kadomtsev–Petviashvili hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 3, pp. 343-356. http://geodesic.mathdoc.fr/item/TMF_2019_199_3_a0/
[1] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Operator approach to the Kadomtsev–Petviashvili equation – transformation groups for soliton equations III”, J. Phys. Soc. Japan, 50:11 (1981), 3806–3812 | DOI | MR
[2] V. G. Kac, J. W. van de Leur, “The $n$-component KP hierarchy and representation theory”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer, Berlin, 1993, 302–343 | MR | Zbl
[3] L.-P. Teo, “The multicomponent KP hierarchy: differential Fay identities and Lax equations”, J. Phys. A: Math. Theor., 44:22 (2011), 225201, 20 pp., arXiv: 1010.5866 | DOI | MR
[4] K. Takasaki, T. Takebe, “Universal Whitham hierarchy, dispersionless Hirota equations and multicomponent KP hierarchy”, Phys. D, 235:1–2 (2007), 109–125 | DOI | MR
[5] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funk. anal. i ego pril., 8:3 (1974), 43–53 | DOI | MR | Zbl
[6] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Non-linear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, 13–16 May, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR | Zbl
[7] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR
[8] I. M. Krichever, A. V. Zabrodin, “Spinovoe obobschenie modeli Reisenarsa–Shnaidera, neabeleva dvumerizovannaya tsepochka Toda i predstavleniya algebry Sklyanina”, UMN, 50:6(306) (1995), 3–56 | DOI | MR | Zbl
[9] I. Krichever, “Periodicheskaya neabeleva tsepochka Toda i ee dvumernoe obobschenie”, UMN, 36:2(218) (1981), 72–77, Prilozhenie k state: B. A. Dubrovin, “Teta-funktsii i nelineinye uravneniya”, 11–80 | DOI | MR | Zbl