@article{TMF_2019_199_2_a9,
author = {J. Das and Ch. Chowdhury and G. S. Setlur},
title = {Nonchiral bosonization of strongly inhomogeneous {Luttinger} liquids},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {302--329},
year = {2019},
volume = {199},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/}
}
TY - JOUR AU - J. Das AU - Ch. Chowdhury AU - G. S. Setlur TI - Nonchiral bosonization of strongly inhomogeneous Luttinger liquids JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2019 SP - 302 EP - 329 VL - 199 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/ LA - ru ID - TMF_2019_199_2_a9 ER -
J. Das; Ch. Chowdhury; G. S. Setlur. Nonchiral bosonization of strongly inhomogeneous Luttinger liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 302-329. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/
[1] S.-I. Tomonaga, “Remarks on Bloch's method of sound waves applied to many-fermion problems”, Progr. Theor. Phys., 5:4 (1950), 544–569 | DOI | MR
[2] J. Luttinger, “An exactly soluble model of a many-fermion system”, J. Math. Phys., 4:9 (1963), 1154–1162 | DOI | MR
[3] D. C. Mattis, E. H. Lieb, “Exact solution of a many-fermion system and its associated boson field”, J. Math. Phys., 6:2 (1965), 304–312 | DOI | MR
[4] I. E. Dzyaloshinskii, A. I. Larkin, “Korrelyatsionnye funktsii odnomernoi fermi-sistemy s dalnodeistviem (model Tomonaga)”, ZhETF, 65:1 (1974), 411–426
[5] K. B. Efetov, A. I. Larkin, “Korrelyatsionnye funktsii v odnomernykh sistemakh s silnym vzaimodeistviem”, ZhETF, 69:2 (1975), 764–776
[6] F. D. M. Haldane, “ ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas”, J. Phys. C, 14:19 (1981), 2585–2610 | DOI
[7] T. Giamarchi, Quantum Physics in One Dimension, International Series of Monographs on Physics, 121, Oxford Univ. Press, Oxford, 2004
[8] G. S. Setlur, Dynamics of Classical and Quantum Fields: An Introduction, CRC Press, Taylor Francis, Boca Raton, London, New York, 2013
[9] J. P. Das, G. S. Setlur, “The quantum steeplechase”, Internat. J. Modern Phys. A, 33:29 (2018), 1850174, 16 pp., arXiv: 1608.05826 | DOI
[10] C. Kane, M. P. Fisher, “Transport in a one-channel Luttinger liquid”, Phys. Rev. Lett., 68:8 (1992), 1220–1223 | DOI
[11] A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. Giamarchi, “On-chain electrodynamics of metallic (TMTSF)${}_2X$ salts: Observation of Tomonaga–Luttinger liquid response”, Phys. Rev. B, 58:3 (1998), 1261–1271, arXiv: cond-mat/9801198 | DOI
[12] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes”, Nature, 397:6720 (1999), 598–601, arXiv: cond-mat/9812233 | DOI
[13] O. Auslaender, A. Yacoby, R. De Picciotto, K. Baldwin, L. Pfeiffer, K. West, “Experimental evidence for resonant tunneling in a Luttinger liquid”, Phys. Rev. Lett., 84:8 (2000), 1764–1768 | DOI
[14] J. P. Das, G. S. Setlur, “The one step fermionic ladder”, Physica E, 94 (2017), 216–230, arXiv: 1704.01710 | DOI
[15] J. P. Das, G. S. Setlur, “Ponderous impurities in a Luttinger liquid”, Europhys. Lett., 123:2 (2018), 27002, arXiv: 1709.06728 | DOI
[16] F. J. Dyson, “The $S$ matrix in quantum electrodynamics”, Phys. Rev., 75:11 (1949), 1736–1755 | DOI | MR
[17] J. Schwinger, “On the Green's functions of quantized fields. I”, Proc. Nat. Acad. Sci. USA, 37:7 (1951), 452–455 | DOI | MR
[18] H. C. Fogedby, “Correlation functions for the Tomonaga model”, J. Phys. C, 9:20 (1976), 3757–3773 | DOI
[19] D. K. K. Lee, Y. Chen, “Functional bosonisation of the Tomonaga–Luttinger model”, J. Phys. A: Math. Gen., 21:22 (1988), 4155–4171 | DOI | MR
[20] V. I. Fernández, C. M. Naón, “Friedel oscillations in a Luttinger liquid with long-range interactions”, Phys. Rev. B, 64:3 (2001), 033402, 4 pp. | DOI
[21] I. V. Lerner, B. L. Althsuler, V. I. Fal'ko, T. Giamarchi (eds.), Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, NATO Science Series, 72, Springer, Dordrecht, 2002 | DOI
[22] U. Schollwöck, “The density-matrix renormalization group”, Rev. Modern Phys., 77:1 (2005), 259–315, arXiv: cond-mat/0409292 | DOI
[23] M. Stone (ed.), Bosonization, World Sci., Singapore, 1994
[24] J. Eisert, Entanglement and tensor network states, arXiv: 1308.3318
[25] N. Bultinck, D. J. Williamson, J. Haegeman, F. Verstraete, “Fermionic matrix product states and one-dimensional topological phases”, Phys. Rev. B, 95:7 (2017), 075108, 24 pp., arXiv: 1610.07849 | DOI
[26] M. B. Hastings, “Entropy and entanglement in quantum ground states”, Phys. Rev. B, 76:3 (2007), 035114, 7 pp., arXiv: cond-mat/0701055 | DOI
[27] F. Verstraete, V. Murg, J. I. Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems”, Adv. Phys., 57:2 (2008), 143–224, arXiv: 0907.2796 | DOI
[28] M. B. Hastings, “An area law for one-dimensional quantum systems”, J. Stat. Mech., 2007:8 (2007), P08024, 14 pp. | DOI | MR
[29] M. Andersson, M. Boman, S. Östlund, “Density-matrix renormalization group for a gapless system of free fermions”, Phys. Rev. B, 59:16 (1999), 10493–10503, arXiv: cond-mat/9810093 | DOI