Nonchiral bosonization of strongly inhomogeneous Luttinger liquids
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 302-329
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonchiral bosonization (NCBT) is a nontrivial modification of the standard Fermi–Bose correspondence in one spatial dimension done to facilitate studying strongly inhomogeneous Luttinger liquids where the properties of free fermions plus the source of inhomogeneities are reproduced exactly. We introduce the NCBT formalism and discuss limit case checks, fermion commutation rules, point-splitting constraints, etc. We expand the Green's functions obtained from NCBT in powers of the fermion–fermion interaction strength (only short-range forward scattering) and compare them with the corresponding terms obtained using standard fermionic perturbation theory. Finally, we substitute the Green's functions obtained from NCBT in the Schwinger–Dyson equation, which is the equation of motion of the Green's functions and serves as a nonperturbative confirmation of the method. We briefly discuss some other analytic approaches such as functional bosonization and numerical techniques like the density-matrix renormalization group, which can be used to obtain the correlation functions in one dimension.
Keywords: Luttinger liquid, Green's function, bosonization.
@article{TMF_2019_199_2_a9,
     author = {J. Das and Ch. Chowdhury and G. S. Setlur},
     title = {Nonchiral bosonization of strongly inhomogeneous {Luttinger} liquids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {302--329},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/}
}
TY  - JOUR
AU  - J. Das
AU  - Ch. Chowdhury
AU  - G. S. Setlur
TI  - Nonchiral bosonization of strongly inhomogeneous Luttinger liquids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 302
EP  - 329
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/
LA  - ru
ID  - TMF_2019_199_2_a9
ER  - 
%0 Journal Article
%A J. Das
%A Ch. Chowdhury
%A G. S. Setlur
%T Nonchiral bosonization of strongly inhomogeneous Luttinger liquids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 302-329
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/
%G ru
%F TMF_2019_199_2_a9
J. Das; Ch. Chowdhury; G. S. Setlur. Nonchiral bosonization of strongly inhomogeneous Luttinger liquids. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 302-329. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a9/

[1] S.-I. Tomonaga, “Remarks on Bloch's method of sound waves applied to many-fermion problems”, Progr. Theor. Phys., 5:4 (1950), 544–569 | DOI | MR

[2] J. Luttinger, “An exactly soluble model of a many-fermion system”, J. Math. Phys., 4:9 (1963), 1154–1162 | DOI | MR

[3] D. C. Mattis, E. H. Lieb, “Exact solution of a many-fermion system and its associated boson field”, J. Math. Phys., 6:2 (1965), 304–312 | DOI | MR

[4] I. E. Dzyaloshinskii, A. I. Larkin, “Korrelyatsionnye funktsii odnomernoi fermi-sistemy s dalnodeistviem (model Tomonaga)”, ZhETF, 65:1 (1974), 411–426

[5] K. B. Efetov, A. I. Larkin, “Korrelyatsionnye funktsii v odnomernykh sistemakh s silnym vzaimodeistviem”, ZhETF, 69:2 (1975), 764–776

[6] F. D. M. Haldane, “ ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas”, J. Phys. C, 14:19 (1981), 2585–2610 | DOI

[7] T. Giamarchi, Quantum Physics in One Dimension, International Series of Monographs on Physics, 121, Oxford Univ. Press, Oxford, 2004

[8] G. S. Setlur, Dynamics of Classical and Quantum Fields: An Introduction, CRC Press, Taylor Francis, Boca Raton, London, New York, 2013

[9] J. P. Das, G. S. Setlur, “The quantum steeplechase”, Internat. J. Modern Phys. A, 33:29 (2018), 1850174, 16 pp., arXiv: 1608.05826 | DOI

[10] C. Kane, M. P. Fisher, “Transport in a one-channel Luttinger liquid”, Phys. Rev. Lett., 68:8 (1992), 1220–1223 | DOI

[11] A. Schwartz, M. Dressel, G. Grüner, V. Vescoli, L. Degiorgi, T. Giamarchi, “On-chain electrodynamics of metallic (TMTSF)${}_2X$ salts: Observation of Tomonaga–Luttinger liquid response”, Phys. Rev. B, 58:3 (1998), 1261–1271, arXiv: cond-mat/9801198 | DOI

[12] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, P. L. McEuen, “Luttinger-liquid behaviour in carbon nanotubes”, Nature, 397:6720 (1999), 598–601, arXiv: cond-mat/9812233 | DOI

[13] O. Auslaender, A. Yacoby, R. De Picciotto, K. Baldwin, L. Pfeiffer, K. West, “Experimental evidence for resonant tunneling in a Luttinger liquid”, Phys. Rev. Lett., 84:8 (2000), 1764–1768 | DOI

[14] J. P. Das, G. S. Setlur, “The one step fermionic ladder”, Physica E, 94 (2017), 216–230, arXiv: 1704.01710 | DOI

[15] J. P. Das, G. S. Setlur, “Ponderous impurities in a Luttinger liquid”, Europhys. Lett., 123:2 (2018), 27002, arXiv: 1709.06728 | DOI

[16] F. J. Dyson, “The $S$ matrix in quantum electrodynamics”, Phys. Rev., 75:11 (1949), 1736–1755 | DOI | MR

[17] J. Schwinger, “On the Green's functions of quantized fields. I”, Proc. Nat. Acad. Sci. USA, 37:7 (1951), 452–455 | DOI | MR

[18] H. C. Fogedby, “Correlation functions for the Tomonaga model”, J. Phys. C, 9:20 (1976), 3757–3773 | DOI

[19] D. K. K. Lee, Y. Chen, “Functional bosonisation of the Tomonaga–Luttinger model”, J. Phys. A: Math. Gen., 21:22 (1988), 4155–4171 | DOI | MR

[20] V. I. Fernández, C. M. Naón, “Friedel oscillations in a Luttinger liquid with long-range interactions”, Phys. Rev. B, 64:3 (2001), 033402, 4 pp. | DOI

[21] I. V. Lerner, B. L. Althsuler, V. I. Fal'ko, T. Giamarchi (eds.), Strongly Correlated Fermions and Bosons in Low-Dimensional Disordered Systems, NATO Science Series, 72, Springer, Dordrecht, 2002 | DOI

[22] U. Schollwöck, “The density-matrix renormalization group”, Rev. Modern Phys., 77:1 (2005), 259–315, arXiv: cond-mat/0409292 | DOI

[23] M. Stone (ed.), Bosonization, World Sci., Singapore, 1994

[24] J. Eisert, Entanglement and tensor network states, arXiv: 1308.3318

[25] N. Bultinck, D. J. Williamson, J. Haegeman, F. Verstraete, “Fermionic matrix product states and one-dimensional topological phases”, Phys. Rev. B, 95:7 (2017), 075108, 24 pp., arXiv: 1610.07849 | DOI

[26] M. B. Hastings, “Entropy and entanglement in quantum ground states”, Phys. Rev. B, 76:3 (2007), 035114, 7 pp., arXiv: cond-mat/0701055 | DOI

[27] F. Verstraete, V. Murg, J. I. Cirac, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems”, Adv. Phys., 57:2 (2008), 143–224, arXiv: 0907.2796 | DOI

[28] M. B. Hastings, “An area law for one-dimensional quantum systems”, J. Stat. Mech., 2007:8 (2007), P08024, 14 pp. | DOI | MR

[29] M. Andersson, M. Boman, S. Östlund, “Density-matrix renormalization group for a gapless system of free fermions”, Phys. Rev. B, 59:16 (1999), 10493–10503, arXiv: cond-mat/9810093 | DOI