Quantum problem of polaron localization and justification of the Su–Schrieffer–Heeger approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 283-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a polaron localized on a trap in a one-dimensional lattice with a harmonic potential of nearest-neighbor interaction. We study the lattice oscillations in the framework of quantum mechanics and regard the polaron energy as a functional of the wave function. We take the electron–phonon interaction into account in the framework of the linear Su–Schrieffer–Heeger approximation. We show that the results do not differ from the adiabatic consideration if the lattice oscillations are described classically. For the polaron ground state, we obtain approximate analytic expressions that agree well with the results of numerical simulation.
Mots-clés : polaron
Keywords: tight-binding approximation.
@article{TMF_2019_199_2_a7,
     author = {V. N. Likhachev and G. A. Vinogradov},
     title = {Quantum problem of polaron localization and justification of {the~Su{\textendash}Schrieffer{\textendash}Heeger} approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {283--290},
     year = {2019},
     volume = {199},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a7/}
}
TY  - JOUR
AU  - V. N. Likhachev
AU  - G. A. Vinogradov
TI  - Quantum problem of polaron localization and justification of the Su–Schrieffer–Heeger approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2019
SP  - 283
EP  - 290
VL  - 199
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a7/
LA  - ru
ID  - TMF_2019_199_2_a7
ER  - 
%0 Journal Article
%A V. N. Likhachev
%A G. A. Vinogradov
%T Quantum problem of polaron localization and justification of the Su–Schrieffer–Heeger approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2019
%P 283-290
%V 199
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a7/
%G ru
%F TMF_2019_199_2_a7
V. N. Likhachev; G. A. Vinogradov. Quantum problem of polaron localization and justification of the Su–Schrieffer–Heeger approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 283-290. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a7/

[1] W. P. Su, J. R. Schrieffer, A. J. Heeger, “Soliton excitations in polyacetylene”, Phys. Rev. B, 22:4 (1980), 2099–2111 ; Erratum, 28:2 (1983), 1138 | DOI | DOI

[2] E. M. Conwell, S. V. Rakhmanova, “Polarons in DNA”, Proc. Natl. Acad. Sci. USA, 97:9 (2000), 4556–4560 | DOI

[3] E. M. Conwell, D. M. Basko, “Polarons and conduction in DNA”, Synth. Metals, 137:1–3 (2003), 1381–1383 | DOI

[4] G. Zhang, H. Hu, Sh. Cui, Z. Lv, “Higher order tight binding Su–Schrieffer–Heeger method and its applications in DNA charge transport”, Physica B, 405:20 (2010), 4382–4385 | DOI

[5] D. J. J. Marchand, G. De Filippis, V. Cataudella, M. Berciu, N. Nagaosa, N. V. Prokof'ev, A. S. Mishchenko, P. C. E. Stamp, “Sharp transition for single polarons in the one-dimensional Su–Schrieffer–Heeger model”, Phys. Rev. Lett., 105:26 (2010), 266605, 4 pp. | DOI

[6] V. M. Kucherov, C. D. Kinz-Thompson, E. M. Conwell, “Polarons in DNA oligomers”, J. Phys. Chem. C, 114:3 (2010), 1663–1666 | DOI

[7] V. D. Lakhno, “DNA nanobioelectronics”, Internat. J. Quantum Chem., 108:11 (2008), 1971–1981 | DOI

[8] V. D. Lakhno, V. B. Sultanov, “O vozmozhnosti sverkhbystrogo perenosa zaryada v DNK”, Matem. biologiya i bioinform., 4:2 (2009), 46–51 | DOI

[9] K. E. Augustyn, J. C. Genereux, J. K. Barton, “Distance-independent DNA charge transport across an adenine tract”, Angew. Chem. Internat. Ed., 46:30 (2007), 5731–5733 | DOI

[10] J. C. Genereux, J. K. Barton, “Mechanisms for DNA charge transport”, Chem. Rev., 110:3 (2010), 1642–1662 | DOI

[11] J. D. Slinker, N. B. Muren, S. E. Renfrew, J. K. Barton, “DNA charge transport over 34 nm”, Nature Chem., 3:3 (2011), 228–233 | DOI

[12] Y. Ono, A. Terai, “Motion of charged soliton in polyacetylene due to electric field”, J. Phys. Soc. Japan, 59:8 (1990), 2893–2904 | DOI

[13] A. A. Johansson, S. Stafström, “Nonadiabatic simulations of polaron dynamics”, Phys. Rev. B, 69:23 (2004), 235205, 7 pp. | DOI

[14] Y. Yao, Y. Qiu, Ch.-Q. Wu, “Dissipative dynamics of charged polarons in organic molecules”, J. Phys.: Condens. Matter, 23:30 (2011), 305401 | DOI

[15] A. S. Davydov, Teoriya tverdogo tela, Mir, M., 1979

[16] E. J. Meier, F. A. An, B. Gadway, “Observation of the topological soliton state in the Su–Schrieffer–Heeger model”, Nature Commun., 7 (2016), 13986, 6 pp. | DOI