Mots-clés : soliton
@article{TMF_2019_199_2_a6,
author = {H. Wajahat W. A. Riaz and M. Hassan},
title = {Dressing method for the~multicomponent short-pulse equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {272--282},
year = {2019},
volume = {199},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a6/}
}
H. Wajahat W. A. Riaz; M. Hassan. Dressing method for the multicomponent short-pulse equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 199 (2019) no. 2, pp. 272-282. http://geodesic.mathdoc.fr/item/TMF_2019_199_2_a6/
[1] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Physica D, 196:1–2 (2004), 90–105 | DOI | MR
[2] Y. Chung, C. K. T. Jones, T. Schäfer, C. E. Wayne, “Ultra-short pulses in linear and nonlinear media”, Nonlinearity, 18:3 (2005), 1351–1374, arXiv: nlin/0408020 | DOI | MR
[3] A. Sakovich, S. Sakovich, “The short pulse equation is integrable”, J. Phys. Soc. Japan, 74:1 (2005), 239–241, arXiv: nlin/0409034 | DOI
[4] J. C. Brunelli, “The bi-Hamiltonian structure of the short pulse equation”, Phys. Lett. A, 353:6 (2006), 475–478, arXiv: nlin/0601014 | DOI | MR
[5] V. K. Kuetche, T. B. Bouetou, T. C. Kofane, “On two-loop soliton solution of the Schäfer–Wayne short-pulse equation using Hirota's method and Hodnett–Moloney approach”, J. Phys. Soc. Jpn., 76:2 (2007), 024004, 7 pp. | DOI
[6] U. Saleem, M. Hassan, “Darboux Transformation and multisoliton solutions of the short pulse equation”, J. Phys. Soc. Japan, 81:9 (2012), 094008, 9 pp. | DOI
[7] H. W. A. Riaz, M. Hassan, “On soliton solutions of multi-component semi-discrete short pulse equation”, J. Phys. Commun., 2:2 (2018), 025005, 14 pp. | DOI
[8] Kh. Vadzhakhat A. Riaz, M. Khassan, “Preobrazovanie Darbu dlya poludiskretnogo uravneniya korotkikh impulsov”, TMF, 194:3 (2018), 418–435 | DOI | DOI
[9] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2004 | MR
[10] C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR
[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[12] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer, Berlin, 1991 | MR | Zbl
[13] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems. Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Berlin, 2005 | DOI | MR
[14] H. W. A. Riaz, M. Hassan, “Darboux transformation of a semi-discrete coupled dispersionless integrable system”, Commun. Nonlinear Sci. Numer. Simul., 48 (2017), 387–397 | DOI | MR
[15] H. W. A. Riaz, M. Hassan, “Multisoliton solutions of integrable discrete and semi-discrete principal chiral equations”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 416–427 | DOI | MR
[16] H. W. A. Riaz, M. Hassan, “A discrete generalized coupled dispersionless integrable system and its multisoliton solutions”, J. Math. Anal. Appl., 458:2 (2018), 1639–1652 | DOI | MR
[17] C. R. Gilson, J. J. C. Nimmo, “On a direct approach to quasideterminant solutions of a noncommutative KP equation”, J. Phys. A: Math. Theor., 40:14 (2007), 3839–3850, arXiv: 0711.3733 | DOI | MR
[18] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya. I”, Funkts. analiz i ego pril., 8:3 (1974), 43–53 ; “Интегрирование нелинейных уравнений математической физики методом обратной задачи рассеяния. II”, 13:3 (1979), 13–22 | DOI | MR | Zbl | DOI | MR | Zbl
[19] V. E. Zakharov, A. V. Mikhailov, “Relyativistski invariantnye dvumernye modeli teorii polya, integriruemye metodom obratnoi zadachi”, ZhETF, 74:6 (1978), 1953–1973 | MR
[20] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[21] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR
[22] E. V. Doktorov, S. B. Leble, A Dressing Method in Mathematical Physics, Mathematical Physics Studies, 28, Springer, Dordrecht, 2007 | MR
[23] N. Mushahid, M. Hassan, “On the dressing method for the generalized coupled dispersionless integrable system”, Modern Phys. Lett. A, 28:20 (2013), 1350088, 20 pp. | DOI | MR
[24] J. Ciešliňski, “An algebraic method to construct the Darboux matrix”, J. Math. Phys., 36:10 (1995), 5670–5706 | DOI | MR